Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation

Carmen E. Flores⁵, Irina Nikonenko⁎, Pablo Mendez⁎, Jean-Marc Fritschy⁶, Shiva K. Tyagarajan⁴,¹, and Dominique Muller⁵,¹,²

⁎Département des Neurosciences Fondamentales, Faculté de Médecine, Centre Médical Universitaire, Université de Genève, 1211 Genève 4, Switzerland; and ²Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zurich, Switzerland

Edited by Richard L. Huganir, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved December 2, 2014 (received for review June 20, 2014)

Maintaining a proper balance between excitation and inhibition is essential for the functioning of neuronal networks. However, little is known about the mechanisms through which excitatory activity can affect inhibitory synapse plasticity. Here we used tagged gephyrin, one of the main scaffolding proteins of the postsynaptic density at GABAergic synapses, to monitor the activity-dependent adaptation of perisomatic inhibitory synapses over prolonged periods of time in hippocampal slice cultures. We find that learning-related activity patterns known to induce N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation and transient optogenetic activation of single neurons induce within hours a robust increase in the formation and size of gephyrin-tagged clusters at inhibitory synapses identified by correlated confocal electron microscopy. This inhibitory morphological plasticity was associated with an increase in spontaneous inhibitory activity but did not require activation of GABA_A receptors. Importantly, this activity-dependent inhibitory plasticity was prevented by pharmacological blockade of Ca²⁺/calmodulin-dependent protein kinase II (CaMKII), it was associated with an increased phosphorylation of gephyrin on a site targeted by CaMKII, and could be prevented or mimicked by gephyrin phosphomutants for this site. These results reveal a homeostatic mechanism through which cell activity regulates the dynamics and function of perisomatic inhibitory synapses, and they identify a CaMKII-dependent phosphorylation site on gephyrin as critically important for this process.

| inhibition | gabaergic synapse | plasticity | hippocampus | CaMKII |

Several activity-dependent plasticity and homeostatic mechanisms (1, 2) contribute to regulate synaptic strength at excitatory synapses. Similar mechanisms are also expected to finely tune the level of inhibition in response to activity in individual neurons, but the mechanisms remain poorly understood. Different forms of plasticity at GABAergic synapses have been reported based on either presynaptic or postsynaptic mechanisms (3, 4). Similar to receptors at excitatory synapses, GABA_A receptors (GABA_ARs), which mediate the fast component of inhibitory transmission, display complex trafficking mechanisms that affect the surface localization and diffusion of receptors (5). The distribution and clustering of GABA_ARs at synapses is tightly regulated through interactions with the scaffolding protein gephyrin, one of the main structural constituent of inhibitory postsynaptic densities. Gephyrin forms multimeric complexes that allow the anchoring of GABA_ARs (6) via molecular mechanisms that include phosphorylation and interactions with the guanine-nucleotide exchange factor collybistin (7–12). In addition to changes in inhibitory strength, more recent in vivo experiments revealed that inhibitory synapses are also dynamic structures that can be formed and eliminated in response to sensory experience (13–15). The mechanisms implicated in the coordinated regulation of excitatory and inhibitory plasticity remain, however, poorly understood. We investigated here this issue by using repetitive confocal imaging of tagged gephyrin to monitor the dynamic behavior of perisomatic inhibitory synapses over periods of days. Our results show that induction of synaptic plasticity and neuronal activity induces the formation of newly formed inhibitory synapses through postsynaptic mechanisms involving the phosphorylation of gephyrin at a CaMKII-dependent site.

Significance

Learning mechanisms rely on plasticity properties of excitatory synapses and an activity-dependent rewiring of excitatory networks. Inhibitory synapses also display plasticity properties, but it remains unknown whether and how excitatory activity and plasticity can affect the organization of inhibitory networks. Here we show that synaptic and neuronal activity directly regulates the number and function of perisomatic inhibitory synapses through a mechanism that involves the phosphorylation of gephyrin by the enzyme calcium/calmodulin-dependent protein kinase II. The results identify a homeostatic mechanism through which cell activity can continuously adjust its excitation/inhibition balance.


The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

S.K.T. and D.M. contributed equally to this work.

¹To whom correspondence should be addressed. Email: dominique.muller@unige.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1411170112/-/DCSupplemental.
Identification of inhibitory synapses. All gephyrin clusters, including very small ones (Fig. 1G) had at least one corresponding inhibitory synapse identified at the EM level. Large clusters (Fig. 1H; >1.5 μm²) usually correlated with the presence of several inhibitory synapses and were excluded from quantitative analyses. Only few inhibitory synapses observed at the EM level had no detectable corresponding fluorescent signal (87.5% correlation between EM synapses and confocal clusters). This result confirmed to us that under our experimental conditions, gephyrin transfection did not affect its membrane trafficking and synapse localization (8).

Activity-Dependent Formation of New Gephyrin Clusters. We then investigated whether synaptic activation of transfected neurons could affect the dynamics of gephyrin clusters. We used two learning-related protocols previously shown to promote structural plasticity of excitatory synapses (18). A first protocol, carbachol treatment (Cch; 10 μM for 45 min) induced theta activity and produced a significant increase in the proportion of new gephyrin clusters detected over the next 24 h (Cch, n = 4 cells; Ctrl, n = 4 cells; Fig. 2A and C and Table S1), but no significant changes in the proportion of lost clusters (Fig. 2D and Table S1). These turnover changes resulted in a significant increase in normalized density (1.8 ± 0.2 per 24 h) and were associated with an increase in size of gephyrin clusters (Fig. 2E and Table S1). Immunolabeling at 72 h for the presynaptic inhibitory marker GAD67 (glutamic acid decarboxylase) revealed a close apposition between all newly formed gephyrin clusters and GAD67 immunostaining (Fig. 2F), suggesting that they represented new inhibitory synapses.

A second protocol, introduction of long-term potentiation by using theta burst stimulation (TBS; ref. 18), similarly produced a marked increase in the formation of new gephyrin clusters 24 h after stimulation (TBS, n = 7 cells; Fig. 2B and C and Table S1), but no changes in the proportion of lost clusters (Fig. 2D). Additionally, preexisting gephyrin clusters showed a robust increase in size (Fig. 2E and Table S1). To verify that these new clusters represented inhibitory synapses, we performed 3D EM reconstruction of mCherry-gephyrin–transfected neurons following TBS. As illustrated in Fig. 3G, all new gephyrin clusters observed 24 h after TBS could be related to symmetric synapses or clusters of inhibitory contacts identified on 3D reconstruction, supporting the notion that they represented newly formed synapses. To determine the specificity of these changes, we also applied TBS, but in the presence of the N-methyl-D-aspartate (NMDA) receptor antagonist (D-AP5; 50 μM; Fig. S2). As shown

![Image](image-url)
in Fig. 3 C–E, D-AP5 prevented the increase in number (TBS, n = 6 cells) and size (Table S1) of gephyrin clusters.

Mechanisms Underlying Activity-Dependent Formation of New Gephyrin Clusters. To dissect the contribution of excitatory and inhibitory activity to this mechanism, we applied the GABA_A antagonist gabazine (GBZ), which enhances excitatory activity while blocking inhibition. Application of GBZ (15 μM, 45 min) to slice cultures also resulted in a robust increase in the formation of new gephyrin clusters over the next 24 h (GBZ, n = 7 cell, Fig. 3 A and B and Table S1) and an increase in their size (GBZ, Fig. 3 C and Table S1). These changes could be detected within hours and were significant already 8 h after treatment (Fig. S3). To investigate the functional implications of this morphological inhibitory plasticity, we performed whole-cell recordings in GBZ-treated, nontransfected neurons. Analysis of spontaneous activity showed a significant increase in frequency (Ctrl, 1.06 ± 0.12 Hz, n = 11 cells; GBZ, 1.60 ± 0.19 Hz, n = 11 cells; P < 0.05; Fig. 3 D and E) and amplitude (Ctrl, 18.8 ± 1.9 pA, n = 10 cells; GBZ, 27.8 ± 2.9 pA, n = 11 cells; P < 0.05; Fig. 3 D and E) of miniature inhibitory postsynaptic currents (mIPSC), indicating that these new synapses were functional. Thus, postsynaptic activation of inhibitory synapses is not required for the induction of this inhibitory plasticity.

We then targeted individual pyramidal neurons and tested whether cellular activity, independently of synaptic inputs, could affect the dynamics of gephyrin-containing inhibitory synapses. Hippocampal cultures were cotransfected with mCherry-gephyrin and Channelrhodopsin-2 Venus (ChR2 Venus; Fig. 4 A) and stimulated by using a 470-nm light pulse protocol (trains of five pulses at 10 Hz, repeated at 1 Hz for 5 min). This light stimulation paradigm reproducibly evoked action potentials in
individual neurons (Fig. 4B; see Methods for details). Analysis of transfected neurons before and 24 h after light stimulation revealed that neurons exposed to 470-nm light pulses (blue), but not neurons exposed to 625-nm light pulses (red), showed very robust structural changes. The proportion of newly formed gephyrin clusters (red light, n = 4 cells; blue light, n = 6 cells; Fig. 4 C–F and Table S1) and their size (Fig. 4G and Table S1) strongly increased 24 h after stimulation. Similar results were also obtained when light stimulation was applied in the presence of glutamate receptor antagonists or TTX (Fig. 4 C–F and Table S1). These experiments thus indicated that cell spiking and depolarization were sufficient to promote inhibitory synapse formation.

Role of Ca2+/Calmodulin-Dependent Protein Kinase II and Gephyrin Phosphorylation in Gephyrin Cluster Plasticity. To investigate the underlying molecular mechanisms, we first examined a possible implication of multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII), recently shown to accumulate at inhibitory synapses following glutamate stimulation (19). Treatment of slice cultures with the CaMKII inhibitor KN-93 (10 μM) during TBS fully prevented the activity-dependent increase in gephyrin cluster formation and size (Fig. 5 A and B). We then looked for a possible target of CaMKII. Because gephyrin phosphorylation is implicated in GABAAR-Rs clustering (8), we analyzed CaMKII phosphorylation sites on gephyrin. In silico analysis of rat gephyrin sequences (NP_074056.2) identified two residues, S303 and S305, that had a strong consensus for CaMKII phosphorylation and we therefore generated gephyrin double mutants for these two sites. Later in vitro kinase assay with bacterially expressed and purified gephyrin and active forms of CaMKII and PKA revealed that S305 site is a target of CaMKII, whereas S303 site is phosphorylated by PKA (Fig. S4). Treatment with GBZ (15 μM) resulted in an enhancement of phosphorylation of S305 site (phospho-deficient, SSA) and S303D/S305D (phospho-mimetic, SSD) eGFP-gephyrin double mutants and single S305A and S303D mutants on inhibitory plasticity. Analysis of fluorescent gephyrin cluster turnover showed that the phospho-resistant mutants (SSA and S305A) did not significantly affect basal gephyrin cluster dynamics (Fig. 5 E and F and Table S1). In contrast, the phospho-mimetic mutants (SSD and S305D) significantly increased cluster formation under basal conditions (Fig. 5 E and F and Table S1). Next, we tested their effects on activity-dependent mechanisms following TBS. Transfection of pyramidal neurons with the phospho-resistant mutants (SSA+TBS and S305A+TBS) fully prevented activity-dependent formation of new gephyrin clusters (Fig. 5 E and F and Table S1), indicating that gephyrin phosphorylation on S305 is necessary for activity-dependent inhibitory synapse formation. Conversely, transfection with the phospho-mimetic mutants (SSD+TBS and S305D+TBS) increased gephyrin cluster formation under basal conditions (Fig. 5E), an effect that occluded further increases by TBS (Fig. 5F and Table S1). These results thus indicate that phosphorylation of gephyrin on S305 site is both sufficient and necessary to promote inhibitory synapse formation in response to neuronal activity. Note that expression of the phospho-resistant mutants (SSA+TBS and S305A+TBS) also prevented all changes in size of gephyrin clusters by stimulation (Fig. 5H and Table S1). Interestingly, the differential regulation of cluster size by activity remained preserved with the phospho-mimetic mutants (SSD+TBS and S305D+TBS), independently of the effects on dynamics (Fig. 5H and Table S1). This result suggests that the regulation of gephyrin cluster size by activity requires additional sites or mechanisms.

Discussion

Work over the last decade has provided strong evidence that behavioral experience and learning can promote rearrangements of excitatory synaptic networks (20). The present study now demonstrates that the same activity patterns and neuronal depolarization also promote rearrangements of perisomatic inhibitory synapses in the hippocampus. Our study was carried out in organotypic slice cultures, which may differ from the in vivo situation, but share strong developmental similarities in terms of intrinsic connectivity and plasticity mechanisms (21–23).

**Fig. 3.** Increase in gephyrin cluster dynamics by the GABAAR antagonist gabazine (GBZ). (A) Proximal apical dendrite before and 24 h after a short GBZ treatment (45 min). Note the marked increase in number (+) and size of gephyrin clusters. (B) Proportion of new gephyrin clusters observed 24 h after a short GBZ treatment (Ctrl, open columns, n = 7 cells/57 clusters; GBZ, filled columns, n = 7 cells/36 clusters). (C) Changes in mean size of gephyrin clusters. (D) Illustration of mIPSCs recorded in nontransfected CA1 pyramidal neurons under control conditions (Left) and 24 h after a short GBZ treatment. (E) Increase in mIPSC frequency (Left) and amplitude (Right) induced by GBZ (Ctrl, open columns, n = 11 cells; GBZ, filled columns, n = 11 cells). (Scale bars: A, 2 μm; D, Top Right, 50 pA/50 s; D, Bottom Right, 100 pA/0.5 s.)
Several forms of plasticity have been described at inhibitory synapses. Changes in strength of GABAergic transmission have been reported at many inhibitory synapses (3, 4, 24) and shown to involve different molecular events (25, 26). The notion that inhibitory synapses could also be structurally plastic and undergo continuous rearrangements is, however, much less understood. Recent in vivo studies have showed that sensory activity or ocular dominance plasticity are associated with important changes in the kinetics and clustering of dendritic inhibitory synapses (14, 15, 27). Here we focused on perisomatic inhibition, which is mainly mediated by parvalbumin interneurons and represents the main inhibitory input to hippocampal CA1 pyramidal neurons (28). These GABAergic synapses play an essential role in the control of network activity and gamma oscillations (29, 30). Using tagged gephrerin as a marker of inhibitory synapses, our study shows that patterns of high frequency activity and neuronal firing promote the formation of new gephrerin clusters within hours. This result is unlikely to be due to gephrerin overexpression, because overexpression of wild-type gephrerin did not affect spontaneous inhibitory transmission or cluster size or density (refs. 8 and 31; Fig. S2). Several findings suggest that the new gephrerin clusters induced by activity are new inhibitory synapses. Their size correspond to that revealed by endogenous gephrerin immunostaining and values obtained by nanoscopy analysis of gephrerin clusters (16). The new gephrerin clusters detected after stimulation display colocalization with GAD67 immunostaining and correlate with the presence of inhibitory symmetric synapses revealed by 3D EM reconstruction. A few inhibitory synapses were not detected at the confocal level by this approach (14, 15); however, they cannot account for the magnitude of changes reported here. Finally, whole cell recordings and immunolabeling of gephrerin clusters in nontransfected cells are also consistent with an increased number and efficacy of inhibitory synapses. Altogether, these results support the conclusion that synaptic and neuronal activity promoted the formation of new perisomatic inhibitory contacts.

Our experiments further identify one phosphorylation site on gephrerin that appears to be both necessary and sufficient for the formation of new inhibitory synapse by activity. The critical involvement of gephrerin in these mechanisms is consistent with several recent data highlighting its implication in the clustering of GABAhythm. Phosphorylation of gephrerin on Ser270 by glycogen synthase kinase 3β (GSK3β) or on Ser268 by ERK have been shown to modulate the density and size of gephrerin clusters (8, 31). Also gephrerin can interact with various partners, including neuroligin 2, collibystin, or even Cdc42 to regulate cluster formation and GABA<sub>δ</sub> aggregation (7, 9). These results are thus consistent with the idea that gephrerin acts as a molecular hub regulating the formation and extension of the inhibitory postsynaptic density (12). Our data now indicate that gephrerin phosphorylation on Ser305 plays a critical role in the activity-dependent regulation of these clustering mechanisms. Our results further suggest that CaMKII is directly implicated in this effect. Pharmacological blockade of CaMKII prevented gephrerin cluster dynamics, S305 is phosphorylated by CaMKII, and its phosphorylation is enhanced following neuronal activation.
Finally interference with S305 phosphorylation through mutation either prevented or mimicked activity-dependent inhibitory synapse formation. Thus, CaMKII, which plays a key role in mechanisms of excitatory synapse plasticity (32), also mediates a compensatory increase of inhibitory synapse formation. In this regard, our results are very consistent with recent data showing that CaMKII, via a phosphorylation of GABA_A_R, contributes to an activity-induced potentiation of GABAergic transmission (4).

Our data identify a mechanism through which neuronal activity can exert a homeostatic control of the number and function of perisomatic inhibitory synapses. This phenomenon may be critically important to individually optimize the level of inhibition on pyramidal neurons and, thus, set the proper balance required for the synchronization of oscillations mediated by parvalbumin interneurons during learning (29, 33, 34).

**Methods**

**Organotypic Hippocampal Cultures.** Organotypic hippocampal slice cultures (400 μm thick) were prepared from 6- to 7-d old rat pups (35) using a protocol approved by the Geneva Veterinary Office and transfected at DIV11 by using a biolistic approach (DNA-coated gold microcarriers; 1.6 μm with a Helios Gene Gun; Bio-Rad Laboratories) according to the instructions of the manufacturer. A few cells were usually transfected per slice, and only one cell per slice was analyzed by using repetitive confocal microscopy 8 d after transfection. Carbachol (10 μM, 45 min) was used to trigger theta activity, and gabazine (15 μM, 45 min) to block GABA_A_R (36) and induce epileptiform activity.

**Plasmids and Gephyrin Phosphorylation Mutants.** To visualize inhibitory synapses, we used eGFP-gephyrin (31) and mCherry-gephyrin (8). The double gephyrin mutants of the S303 and S305 residues were identified as putative CaMKII phosphorylation sites by in silico analyses (NP_074056.2). The double mutants eGFP-S303/S305A and eGFP-S303D/S305D gephyrin as well as the single eGFP-S305A and eGFP-S305D were generated by using a site-directed mutagenesis protocol (Life Technologies). The mutation sequences were confirmed and checked for protein expression before neuron transfection.

**Imaging.** Laser scanning confocal microscopy was performed by using an Olympus Fluoview 300 system. Proximal dendrites of CA1 hippocampal pyramidal neurons expressing tagged gephyrin were imaged 8 d after transfection at DIV19 for several days as described (18). For quantitative analyses, maximum intensity projections were used and images of proximal dendrites were thresholded from background with a scaling factor of 3 (segmentation plugin, NIH ImageJ). Gephyrin clusters were identified (regions of interest;
ROIs by using a multiparticle analysis by size discrimination (>0.02 μm², NIH ImageJ), and ROI area values were obtained from the 2 stack of raw images by using Multi-Region Tool. Large gephyrin clusters of more than 1.5 μm² were excluded from quantitative analyses. For presentation purposes, images were processed with NIH ImageJ and OsiriX software for volume rendering.

EM. For correlative confocal and electron microscopy, hippocampal slice cultures with CA1 pyramidal neurons cotransfected with eGFP and mCherry-gephyrin were imaged in a confocal microscope, fixed, and processed for eGFP immunoperoxidase EM labeling as described (37). After embedding in EPON resin (Fluka), the slices were trimmed around the imaged neurons and ultra-thin (60 nm) sections were cut. Images of the labeled primary apical dendrites of interest were taken at magnification 9,700× (Tecnai G212; FEI Company). After alignment of digital serial electron micrographs by using Photoshop software (Adobe), complete 3D reconstruction of the dendritic segment of interest was carried out by using Neurolucida software (version 6.02; MicroBrightField). Inhibitory synaptic contacts were defined by the presence of the close apposition of a presynaptic bouton, filled with pleomorphic synaptic vesicles forming an active zone with docked vesicles, with the labeled apical dendrite.

Optogenetic Stimulation. Slice cultures were transfected with Channelrhodopsin-2 (ChR2-venus) and mCherry-gephyrin by using the gene gun approach. Eight days after transfection, they were transferred to a recording chamber as described (18). They were continuously perfused (2 mL/min) with a solution containing (in mM): NaCl 140, KCl 1.6, CaCl₂ 2.5, MgCl₂ 1.5, NaHCO₃ 24, KH₂PO₄ 1.2, glucose 10, and acetic acid 2 and saturated with 95% O₂ and 5% CO₂ at a temperature of 37 °C. Whole-cell recordings were carried out by using patch pipettes filled with a solution containing (in mM): NaCl 124, KCl 1.6, CaCl₂ 2.5, MgCl₂ 1.5, NaHCO₃ 24, KH₂PO₄ 1.2, glucose 10, and acetic acid 2 and saturated with 95% O₂ and 5% CO₂ at a temperature of 37 °C. Tetrodotoxin (TTX 1 μM) was added to remove all unbound kinase and proteins before addition of 2× SDS loading buffer and boiling at 90 °C for 3 min. Western blot to detect gephyrin phosphorylation was performed by using either anti-phospho-gephyrin Ser-303 (1 μg/mL, custom made by Genscript) or Ser-305 (1 μg/mL, custom made by Genscript) and Commassie stain to detect total gephyrin.

Western Blots. Slices cultures (16–20 DIV) were rapidly stored at −80 °C until homogenization. Tissue was lysed in lysis buffer (50 mM Tris pH 7.4–8, 120 mM NaCl, 0.5% Nonidet P-40) containing Complete mini protease inhibitor (Roche Diagnostics) and phosphatase inhibitors (Sigma-Aldrich). Homogenates were sonicated at 4 °C, centrifuged for 20 min at 14,000 × g at 4 °C, and the supernatant was collected. Protein was quantified by using BCA Protein Assay Kit (Pierce), and 20 μL of samples (containing 40 μg of protein) were resolved on Bis-Tris Protein Gels 4–15% and 7% (Sigma) antibodies and detected by using ECL (GE Healthcare). Proteins were resolved by chemiluminescence ECL (GE Healthcare).

Statistical Analyses. Graphs and statistical analyses were carried out with Prism. Data and statistics are given for each experimental condition in Table S1. Statistical analyses were performed by using unpaired t tests, unless otherwise indicated. Data are represented as mean ± SEM. Data significance is indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001.

ACKNOWLEDGMENTS. We thank Yann Bernardinelli, Lorena Jourdain and all laboratory members for their support and excellent technical help. This work was supported by Swiss National Science Foundation Grant Sinergia and Grant 310030B-144080 (to D.M.).


Flores et al. PNAS Early Edition | 7 of 8


