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Fluctuation X-ray scattering (FXS) is an extension of small- and
wide-angle X-ray scattering in which the X-ray snapshots are
taken below rotational diffusion times. This technique, performed
using a free electron laser or ultrabright synchrotron source, pro-
vides significantly more experimental information compared with
traditional solution scattering methods. We develop a multitiered
iterative phasing algorithm to determine the underlying structure
of the scattering object from FXS data.
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X-ray solution scattering of macromolecular complexes is a ver-
satile technique, providing low-resolution structural informa-

tion that, when supplemented with high-resolution crystallographic
data, can result in fundamental insights into the physiological be-
havior and function of macromolecular machines (1). Although
solution scattering has been applied successfully to many problems
in the biological sciences (2, 3), the technique suffers from a sig-
nificant shortcoming. Due to the 3D averaging that occurs during
the X-ray snapshots, the effective information content of the data is
typically only around 9–15 independent parameters (4). This lack of
sufficient information in the data ultimately results in nonunique or
poorly determined structural hypotheses.
To overcome these issues, it was proposed to perform the solu-

tion scattering process at timescales below rotational diffusion times
(5, 6). By avoiding physical rotational averaging, speckle patterns
emerge from which angular correlation functions can be computed.
These so-called fluctuation X-ray scattering experiments can be
performed on modern synchrotrons (7) and free electron laser
sources (8, 9). The angular correlation information provided from
these experiments is directly related to the imaged structure (10)
and contains significantly more information than standard small-
and wide-angle X-ray scattering (SAXS/WAXS) data. Although the
relation from real space structure to fluctuation scattering data is
straightforward, the inverse problem of determining a molecular
model from fluctuation scattering data is nontrivial (8).
For 2D systems, such as macromolecules randomly oriented

around a single axis (11), an analytical route for image reconstruc-
tion is available (12). However, this approach requires triple corre-
lation measurements across the full resolution range of interest,
which may not be fully accessible due to experimental limitations.
Earlier work attempting to determine 3D shape from fluctua-

tion scattering data was based on solving two phase problems
consecutively. Although this route has shown success in cases
where the scattering species has helical (13) or icosahedral sym-
metry (14), it fails to produce a structure for the general case.
Another approach was developed in which the inverse problem
was solved using a reverse Monte Carlo method (8), similar to
what is used to determine macromolecular envelopes from SAXS
data (15–17). Although this approach allows a real space object to
be reconstructed without the need for symmetry constraints, the
procedure is computationally expensive and, in general, conver-
gence can be problematic (18). Furthermore, the existing reverse
Monte Carlo method assumes a binary model, where voxels either
have a scattering length or do not. The breakdown of this uniform
density assumption ultimately limits the resolution of features that
can be reconstructed through such an approach.
Here we develop a fundamentally different approach to struc-

ture solution from fluctuation scattering, based on a multitiered
iterative phasing (MTIP) algorithm. In particular, we derive a

series of projection operators, which are used to iteratively modify a
model to satisfy specified real space constraints and match the de-
rived model fluctuation scattering data to external observations.
This approach does not require a uniform density assumption and
solves the two inherent phase problems concurrently, which allows
one to obtain a reconstruction with a reduced amount of fluctuation
scattering data, or even SAXS/WAXS data alone, by compensating
with the extra information provided through real space constraints.
The presented method allows one to study the structure of objects

that cannot be easily crystallized, while achieving higher resolution
than what is possible through standard SAXS/WAXS experiments.
As a result, this approach can be used to gain deeper insight into
biological structure and to expand the range of characterization
methods for nanostructures (19). Furthermore, the framework de-
veloped here allows one to extend many of the density modification
techniques developed for crystallography to solution scattering.

Background
Here we use r and q to denote real and Fourier space variables,
respectively, and designate r= jrj and q= jqj. The 3D scattered
intensity I of an object is given by the squared magnitude of the
Fourier transform of its electron density ρ:

IðqÞ=

�������
Z
R3

ρðrÞe−2πiq·rdr

�������
2

.

When the object is rotated by R∈ SOð3Þ, the resulting intensi-
ties become IRðqÞ= IðRqÞ. The diffraction pattern from the ob-
ject with orientation R measured on a 2D detector with a beam
of wavelength λ can be expressed in polar coordinates as
IRðq,ϕIÞ= IRðq, θðqÞ,ϕIÞ, where θðqÞ= π=2 for a flat Ewald sphere,
θðqÞ= arccosðqλ=2Þ for a curved Ewald sphere, and ϕI is the angle
about the incident beam axis.

Significance

Fluctuation X-ray scattering is an emerging imaging technique
that seeks to overcome the low data-to-parameter ratio en-
countered in traditional small- and wide-angle X-ray scattering
methods. By acquiring a large number of ultrashort X-ray ex-
posures on an ensemble of molecules, this technique produces a
dataset that contains structural information far beyond what is
obtainable from traditional solution scattering methods without
requiring crystallization. However, reconstructing the underlying
molecular shape from this data is challenging, as the information
in each image is averaged over several molecular orientations. In
this article, we introduce a flexible iterative method that can
rapidly determine molecular structure from fluctuation scatter-
ing data. This allows one to visualize structural details that may
be inaccessible through traditional methods.
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In a fluctuation scattering experiment, one measures a series
of Ndp diffraction patterns IRn from an ensemble of identical and
randomly oriented particles. From these images, one computes
the average angular cross-correlation function

C
�
q, q′,ϕ

�
=

1
2πNdp

XNdp

n=1

Z2π
0

IRnðq,ϕI +ϕÞIRn

�
q′,ϕI

�
dϕI . [1]

If there are multiple particles per shot, then, for a sufficiently
dilute system, this average converges to that of the single particle
per shot case up to a zero frequency component (20).
The fluctuation scattering reconstruction problem is to de-

termine the electron density ρ given the angular correlation data
defined by Eq. 1, along with any a priori known constraints, e.g.,
compact support, symmetry, or upper and lower bounds. In par-
ticular, the angular correlation data yield information about the
harmonic coefficients of the intensities, which can be exploited to
determine information about ρ. In the following subsections, we
describe how to extract this intensity harmonic coefficient in-
formation from the angular correlation data for both the 2D and
3D versions of the fluctuation scattering reconstruction problem.
See SI Text and Figs. S1–S6 for an introduction to circular and
spherical harmonics and an overview of fluctuation scattering data.

Two-Dimensional Case. The 2D version of fluctuation scattering is
obtained by assuming a flat Ewald sphere and that the particle ori-
entations are randomly sampled from a uniform distribution of ro-
tations about a single axis parallel to the incident beam. In this case,
one can retrieve intensity information only along a flat 2D slice
of the intensities, which, by the Fourier projection slice theorem, is
equivalent to the squared Fourier magnitudes of the X-ray projection
of ρ to a plane perpendicular to the rotation axis.* For the moment,
assume that there is only one particle per shot.
A function ρ∈L2ðR2Þ can be formally expressed in terms of its

circular harmonic expansion as

ρðr,ϕÞ=
X∞

m=−∞
ρmðrÞeimϕ, [2]

where the circular harmonic coefficients ρmðrÞ are given by

ρmðrÞ=
1
2π

Z2π
0

ρðr,ϕÞe−imϕdϕ. [3]

The circular harmonic coefficients of ρ and its Fourier transform
ρ̂ are related through the Hankel transform via

ρ̂mðqÞ= 2πð−iÞm
Z∞
0

ρmðrÞJmð2πqrÞr   dr, [4]

ρmðrÞ= 2π   im
Z∞
0

ρ̂mðqÞJmð2πqrÞq  dq, [5]

where Jm is a Bessel function of order m.
We denote the circular harmonic coefficients of the angular

cross-correlations in Eq. 1 by Bmðq, q′Þ, which can be expressed in
terms of the intensity circular harmonic coefficients Im as

Bm
�
q, q′

�
= ImðqÞI*m

�
q′
�
. [6]

We denote the circular harmonic coefficients of the angular auto-
correlations, i.e., Cðq, qÞ, by BmðqÞ=Bmðq, qÞ. In this case, one has

BmðqÞ= jImðqÞj2. [7]

If there are K particles per shot, then, after rescaling, the B0 data
will be off by a factor of K; i.e., B0ðq, q′Þ=K2I0ðqÞI*0ðq′Þ and
Bmðq, q′Þ=KImðqÞI*mðq′Þ for m≠ 0.
The cross-correlation circular harmonic coefficients form a

rank one Gram matrix, which determines Im up to a single phase
factor for each m. In particular, for a discretization fqjg of q and
a fixed m, if we form the matrix with entries Bmðqj, qkÞ, then its
top eigenvector vm, with corresponding eigenvalue λm, is related
to the intensity harmonic coefficients via

Im
�
qj
�
= vm

�
qj
� ffiffiffiffiffiffi

λm
p

eiϕm , [8]

where ϕm is a single unknown real-valued phase factor.

Three-Dimensional Case. The 3D version of fluctuation scattering
allows for a curved Ewald sphere and assumes that the particle
orientations are randomly sampled from a uniform distribution
over SOð3Þ. For the moment, assume that there is only one
particle per shot.
A function ρ∈L2ðR3Þ can be formally expressed in terms of its

spherical harmonic expansion as

ρðr, θ,ϕÞ=
X∞
l=0

Xl

m=−l
ρlmðrÞYm

l ðθ,ϕÞ, [9]

where the Ym
l are the spherical harmonics and the spherical

harmonic coefficients ρlm are given by

ρlmðrÞ=
Z2π
0

Zπ

0

ρðr, θ,ϕÞYm*

l ðθ,ϕÞsin θ  dθdϕ. [10]

The spherical harmonic coefficients of ρ and its Fourier trans-
form ρ̂ are related through the spherical Hankel transform via

ρ̂lmðqÞ= 4πð−iÞl
Z∞
0

ρlmðrÞ jl ð2πqrÞr2dr, [11]

ρlmðrÞ= 4πil
Z∞
0

ρ̂lmðqÞ jl ð2πqrÞq2dq, [12]

where jl is the spherical Bessel function of order l.
In the limit of an infinite number of images, one has

C
�
q, q′,ϕ

�
=

X∞
l=0

Fl
�
q, q′,ϕ

�
Bl

�
q, q′

�
, [13]

where

Fl
�
q, q′,ϕ

�
=

1
4π

Pl
�
cos θðqÞcos θ�q′�+ sin θðqÞsin θ�q′�cosϕ�,

where Pl is the Legendre polynomial of order l, and

Bl
�
q, q′

�
=

Xl

m=−l
IlmðqÞI*lm

�
q′
�
, [14]

where the Ilm are the spherical harmonic coefficients of the
intensities (5). The corresponding autocorrelation data, BlðqÞ=
Blðq, qÞ, yields

Bl ðqÞ=
Xl

m=−l
jIlmðqÞj2. [15]*To simplify the presentation, we abuse notation and still call the 2D projected quantity ρ

and denote the slice Iðq, π=2,ϕÞ simply by Iðq,ϕÞ.
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For a fixed q and q′, Blðq, q′Þ can be retrieved by inverting the
associated linear system in Eq. 13. If there are K particles per shot,
then, after rescaling, the B0 data will be off by a factor of K;
i.e., B0ðq, q′Þ= K2I00ðqÞI*00ðq′Þ and Blðq, q′Þ=K

Pl
m=−lIlmðqÞI*lmðq′Þ

for l≠ 0.
Given a discretization fqjg of size N and a fixed l, the matrix Bl

with entries Blðqj, qkÞ is a rank minð2l+ 1,NÞ Gram matrix with
the eigendecomposition

Bl =VlΛlV *
l , [16]

where Vl is N by minð2l+ 1,NÞ and Λl has nonnegative entries.
This decomposition is related to the spherical harmonic co-
efficients of the intensities, expressed as an N by 2l+ 1 matrix Il
for each l, via multiplication by an unknown 2l+ 1 dimensional
unitary matrix Ul. In particular, if 2l+ 1≤N, then

Il =Vl

ffiffiffiffiffi
Λl

p
Ul, [17]

and if 2l+ 1>N, then one obtains a similar result by zero pad-
ding; i.e., Il =

�
Vl

ffiffiffiffiffi
Λl

p
0
�
Ul.

Polar Fourier Transform
To obtain a reconstruction algorithm, we have to enforce several
constraints in real space while matching the circular or spherical
harmonic information to the measured quantities that are defined
in Fourier space. Therefore, it is desirable to compute the Fourier
transform and its inverse on a polar grid, where circular and
spherical harmonic transforms can be computed most efficiently.
Here we describe approximations to the 2D and 3D Fourier
transforms and their inverses on such a polar grid. This is ac-
complished by computing discrete circular/spherical harmonic
transforms, approximating the Hankel/spherical Hankel trans-
forms, and then computing the inverse discrete circular/spherical
harmonic transforms. We assume, after rescaling, that the support
of ρ is contained within r< 1 and we resolve ρ̂ up to q<Q.

Two-Dimensional Polar Fourier Transform. Here we use a polar grid
with nodes equispaced in radii and equispaced in angle for each
radius. Specifically, for 0≤ n<N, the real space radial node
components are given by rn = n=N, the Fourier space radial node
components are given by qn =Qn=N, and the number Mn of
angular nodes for each radius can be varied.
We use a fast Fourier transform (FFT) for each radius to

compute the circular harmonic coefficients and invert them with
an inverse fast Fourier transform (IFFT).†
Note that for a smooth ρ, ρm has a smooth even/odd extension

to ½−1,1� for m even/odd. Therefore, by expanding ρm into a cosine/
sine series, we obtain spectrally accurate quadrature rules for the
transforms in Eqs. 4 and 5 via‡

ρ̂mðqnÞ≈ ð−iÞm
XN−1

n′=0
ρmðrn′Þwm,n,n′,

ρmðrnÞ≈ imQ2
XN−1

n′=0
ρ̂mðqn′Þwm,n,n′,

where for m even

wm,n,n′ =
4π
N

XN−1

k=0

ckcn′ cos
�
πk

n′
N

	Z1

0

cosðπkxÞ Jm


2πQ

n
N
x
�
x  dx,

and for m odd

wm,n,n′ =
4π
N

XN−1

k=0

ckcn′ sin
�
πk

n′
N

	Z1

0

sinðπkxÞ Jm


2πQ

n
N
x
�
x  dx,

where ca is 1=2 for a= 0 and is 1 otherwise.

Three-Dimensional Polar Fourier Transform. Here we use a polar
grid with nodes whose radial components are equispaced, as
described in the 2D case. For the nth radial component, the
nodes lie on Ln inclination angles, located at the arccosines of
the Gauss–Legendre quadrature nodes, and for each inclination
angle we have 2Ln − 1 equispaced azimuthal angles.
We compute the spherical harmonic transform and its inverse

for each radius via the Gauss–Legendre approach, e.g., ref. 21.
Note that for a smooth ρ, ρlm has a smooth even/odd extension

to ½−1,1� for l even/odd. Therefore, by expanding ρlm into a co-
sine/sine series, we obtain spectrally accurate quadrature rules
for the transforms in Eqs. 11 and 12 via

ρ̂lm ðqnÞ≈ ð−iÞl
XN−1

n′=0
ρlmðrn′Þwl,n,n′,

ρlmðrnÞ≈ ilQ3
XN−1

n′=0
ρ̂lm ðqn′Þwl,n,n′,

where for l even

wl,n,n′ =
8π
N

XN−1

k=0

ckcn′ cos
�
πk

n′
N

	Z1

0

cosðπkxÞ jl


2πQ

n
N
x
�
x2   dx,

and for l odd

wl,n,n′ =
8π
N

XN−1

k=0

ckcn′ sin
�
πk

n′
N

	Z1

0

sinðπkxÞ jl


2πQ

n
N

x
�
x2   dx.

Multitiered Iterative Phasing
Iterative phasing techniques were originally introduced to solve the
phase retrieval problem, which is to reconstruct an object from its
intensities while enforcing any applicable constraints. These tech-
niques are based on iteratively applying a combination of projection
operators to enforce constraints in both real and Fourier space until
convergence is achieved. If a sufficient number of constraints are
enforced, then, in general, ab initio reconstruction is possible via
iterative phasing. For example, this can be accomplished when one
samples the intensity data at twice the Nyquist rate and enforces the
support constraint implied by this oversampling (22).
Here we extend these iterative phasing techniques to a multitiered

algorithm that can reconstruct an object from its fluctuation scat-
tering data, which requires one to determine both intensity and
phase information. In particular, we seek a function ρ whose in-
tensity harmonic coefficients match the constraints imposed by the
correlation data in Eqs. 6 and 7 for the 2D case and in Eqs. 14 and
15 for the 3D case, while satisfying any applicable real space con-
straints, such as being supported within a given region, nonnegativity,
upper bounds, and/or symmetry. However, in practice, noise and/or
an insufficient number of images may limit the amount of in-
formation obtainable from the correlation data; i.e., one may be able
to accurately determine Bm and Bl only for jmj<mmax and l< lmax,
or may be able to retrieve only autocorrelation data instead of the
full cross-correlation data.
Now we define several projection operators used to enforce

the previously mentioned constraints.§

†Any circular/spherical harmonic coefficients that cannot be resolved on the grid are set
to zero.

‡The integrals in the definition of the quadrature weights are precomputed to high pre-
cision via adaptive quadrature.

§If there are K particles per shot, then we assume here that the B0 data has been rescaled
by 1=K, relative to the remaining data. Alternatively, if K is unknown, then this scaling
factor could be allowed to float.
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Real Space Projectors. Given a support set S, the support pro-
jection operator PS projects a function to have support con-
tained in S:

ðPSρÞðrÞ=
�
ρðrÞ, if   r∈ S,
0, otherwise.

Similarly, one can extend this definition to enforce nonnega-
tivity, PS+ρðrÞ=maxðPSρðrÞ, 0Þ; an upper bound τ, PSτρðrÞ=min
ðPSρðrÞ, τÞ; or both, PS+τρðrÞ=minðPS+ρðrÞ, τÞ.
To enforce symmetry given by a point group G, we define the

associated orthogonal projection operator PG, which projects a
function to the closest function in the L2 norm that is invariant
under G. In 2D, this projection can be represented in terms of
circular harmonic coefficients by

ðPGρÞmðrÞ=
8<
: ρmðrÞ+

a
2
ðρ−mðrÞ− ρmðrÞÞ, if  m≡ 0ðmod  kÞ,

0, otherwise,

where G has a k-fold rotational element, and a is 1 if G has a
reflection and is 0 otherwise. In 3D, this projection can be
represented in terms of spherical harmonic coefficients by

ðPGρÞlmðrÞ=
1
jGj

X
O∈G

Xl

m′=−l
ðdetðOÞÞl Dlmm′ðdetðOÞOÞρlm′ðrÞ,

where the Dlmm′ are the Wigner D-matrix elements.

Two-Dimensional Correlation Projectors. Given the circular har-
monic coefficient magnitude data BmðqÞ in Eq. 7, we define the
autocorrelation projection operator PA, which projects a function
I to the closest function in the discrete L2 norm{ whose circular
harmonic magnitudes match Bm. This projection can be expressed in
terms of circular harmonic coefficients by

ðPAIÞmðqÞ=
ImðqÞ
jImðqÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
BmðqÞ

p
.

If ImðqÞ= 0, then the quotient is replaced by 1. Additionally, we
allow the coefficients to float for jmj>mmax; i.e., ðPAIÞm = Im.
If cross-correlation data are available, then recall that vm

ffiffiffiffiffiffi
λm

p
is

equal to the intensity harmonic coefficients up to a single phase
factor for each m. We define the cross-correlation projection
operator PC, which projects a function I to the closest function in
the discrete L2 norm whose circular harmonics coefficients satisfy
Eq. 8. This projection can be expressed in terms of circular har-
monic coefficients by

ðPCIÞmðqÞ= vmðqÞ
ffiffiffiffiffiffi
λm

p P
jIm

�
qj
�
v*m

�
qj
�
qj��P

jIm
�
qj
�
v*m

�
qj
�
qj
��.

If the denominator is 0, then the quotient is replaced by 1. Again,
we set ðPCIÞm = Im for jmj>mmax.

Three-Dimensional Correlation Projectors. Given the spherical
harmonic coefficient data Bl, we define the spherical har-
monic autocorrelation projection operator PA, which projects
a function I to the closest function in the discrete L2 norm#

whose spherical harmonic coefficients satisfy Eq. 15. This
projection can be expressed in terms of spherical harmonic co-
efficients by

ðPAIÞlmðqÞ=
IlmðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
m=−ljIlmðqÞj2

q ffiffiffiffiffiffiffiffiffiffiffi
BlðqÞ

p
.

If the denominator is 0, then the quotient in the above definition
is replaced by 1=

ffiffiffiffiffiffiffiffiffiffiffi
2l+ 1

p
. Additionally, we allow the coefficients

to float for l> lmax; i.e., ðPAIÞlm = Ilm.
Recall that angular cross-correlation data determine the

spherical harmonic coefficients up to multiplication by a unitary
matrix via Eq. 17. Therefore, the l-th order spherical harmonic
coefficients of the function closest to I that match the cross-
correlation data are given in matrix form by Vl

ffiffiffiffiffi
Λl

p
Ul, where Ul

solves the unitary Procrustes problem,

min
Ul∈Uð2l+1Þ

D
Il −Vl

ffiffiffiffiffi
Λl

p
Ul

�
F
,

where Uð2l+ 1Þ is the set of unitary 2l+ 1 dimensional matrices;
k · kF is the Frobenius norm; D= diagðq0, . . . , qN−1Þ weights the
norm to match the discrete L2 norm; and we use zero padding if
2l+ 1>N. In particular, given the singular value decompositionffiffiffiffiffi
Λl

p
V *
l D

2Il =U lΣlVp
l , the minimizer is given by U lV*

l . This result
allows us to define the spherical harmonic cross-correlation
projection operator PC, which projects a function I to the closest
function in the discrete L2 norm whose spherical harmonic co-
efficients satisfy Eq. 14. This projection can be expressed in
terms of spherical harmonic coefficients by

ðPCIÞl =Vl

ffiffiffiffiffi
Λl

p
U lV*

l ,

where ðPCIÞl is the N by 2l+ 1 matrix of spherical harmonic co-
efficients of PCI. Again, we set ðPCIÞl = Il for l> lmax.

Fluctuation Scattering Operator. We now define the fluctuation
scattering operator F, which given a function ρ, projects its inten-
sities to match the angular correlation data, projects the resulting
quantities to the nearest nonnegative function, and then projects ρ
to the closest function whose Fourier magnitudes match the square
root of the projected intensities. This operator can be expressed in
the Fourier domain as

dðFρÞðqÞ= ρ̂ðqÞ
jρ̂ðqÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max




P#jρ̂j2

�
ðqÞ, 0

�r
,

where, depending on what type of data is available, P# is either
PA or PC. If ρ̂ðqÞ= 0, then the quotient in the above definition is
replaced by 1.

Iterative Phasing Algorithms. Now we describe how to use these
projection operators in an iterative procedure to reconstruct a
function from its fluctuation scattering data while enforcing pre-
scribed real space constraints. We start with some initial guess ρð0Þ

and iteratively apply a series of projection operators to produce
the iterate ρðnÞ after n steps.
One of the first developed iterative phasing techniques is

the error-reducing (ER) method, which alternates between
projecting constraints in Fourier space and in real space
(23). Here we generalize ER for fluctuation scattering data,
yieldingk

{The discrete L2 norm for the 2D polar grid is given by weighting the ℓ2 norm by qn=Mn.
#The discrete L2 norm for the 3D polar grid is given by weighting the ℓ2 norm by
q2
n=ð2Ln − 1Þ times the Gauss–Legendre quadrature weights associated with each

inclination angle. kDue to finite precision, ρðnÞ may become complex and should be replaced by its real part.
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ρðn+1ÞðrÞ=


PSpFρðnÞ

�
ðrÞ,

where PSp is one of PS, PS+, PS+τ, or PSτ.
One of the main disadvantages of ER is that it often gets stuck in

local minima. A popularmethod to circumvent this issue is the hybrid
input–output (HIO) method, which uses negative feedback to inhibit
stagnation (24). We formulate HIO for fluctuation scattering as

ρðn+1ÞðrÞ=
��

FρðnÞ
�ðrÞ, if

�
Pc
SpFρ

ðnÞ�ðrÞ= 0,
ρðnÞðrÞ− β

�
Pc
SpFρ

ðnÞ�ðrÞ, otherwise,

where ðPc
SpρÞðrÞ= ρðrÞ− ðPSpρÞðrÞ and β∈ ð0,1�.

The iterative schemes listed above can be modified to enforce
point group symmetry by replacing F with PGF.
To obtain a good estimate of the true support region, we use

the shrinkwrap method (25), which periodically convolves the
iterate with a Gaussian of width σ and then applies a threshold «
to estimate the support; i.e., the updated support for the d-dimen-
sional case is taken to be

S=

8><
>:r :

1

ð2πσ2Þd=2
Z
Rd

ρðnÞðsÞe−jr−sj2=2σ2ds≥ e

9>=
>;.

In particular, we apply several iterations of HIO, followed by a
few iterations of ER, perform shrinkwrap to update the support,
and repeat this process until convergence is reached. See Fig. S7
for a summary of the described iterative procedure.
We note that the solution can be reconstructed only up to

translation, rotation, reflection through a line, and inversion
through a point. Furthermore, a general structure might not be
uniquely determined by its fluctuation scattering data (26).
However, whether this nonuniqueness corresponds to small
perturbations around a single solution, several clusters of solu-
tions, or a continuum of solutions and how it depends on mmax,
lmax, and the imposed constraints are not fully understood and
likely depend on the complexity of the structure.

Results
Here we test the presented iterative phasing schemes by recon-
structing several structures from their theoretical Bm=Bl data. In
general, we enforce support andnonnegativity constraints; set β= 0.5,
σ = 1=N, « to be 2–10% of the maximum density value, Q=N=2;
sample the fluctuation scattering data at least at twice the Nyquist
rate; and initialize the procedure with the support S to be the ball of
radius 1=2and the density ρð0Þ to be 1within the support and 0outside
of it. More details can be found in SI Text. Each reconstruction took
less than 5 min on a single core of a 2.4-GHz Ivy Bridge processor.
We present reconstructions from angular correlation data, using

the 2D version of the iterative phasing approach in Figs. 1 and 2.
In Fig. 1, the target shape was given a uniform density of 1 within a
circle; had a rectangle, a triangle, and an ellipse cut out; and was
then smeared onto the grid via convolution with a Gaussian of
width 0.015. We show reconstructions of the target shape from
SAXS data, autocorrelation data, and cross-correlation data for
mmax = 4,10,20, both with and without upper-bound constraints,
using τ= 1, and set N = 100. In Fig. 2, we reconstruct the 2D X-ray
projection of a pentameric ligand-gated ion channel (pLGIC),
from Protein Data Bank entry 4NPP (27), through its symmetry
axis. Here we use cross-correlation data up to a 1.4-Å resolution
with mmax = 20, enforce a fivefold symmetry axis, and set N = 60.
Results for the reconstruction of 3D objects from angular

correlation data are shown in Figs. 3 and 4. In Fig. 3, the target
shape was given a uniform density of 1 within a sphere; had a
box, a cube, and an ellipsoid cut out; and was then smeared onto
the grid via convolution with a Gaussian of width 0.015. We show
reconstructions of the target shape from SAXS data, autocorrelation
data, and cross-correlation data for lmax = 4,10,20, with an upper-
bound constraint, using τ= 1, and set N = 42. In Fig. 4, we recon-
struct the 3D electron density of pLGIC from cross-correlation data

Fig. 2. Reconstruction of the X-ray projection of the pLGIC. (Left) Original.
(Right) Reconstruction from cross-correlation data with mmax = 20.

Fig. 3. Three-dimensional shape reconstructions, displayed as transparent
density isosurfaces. (A) Original shape. (B) Reconstruction from SAXS data.
(C–E) Reconstructions from autocorrelation data with lmax = 4,10,20. (F–H)
Reconstructions from cross-correlation data with lmax = 4,10,20.

Fig. 1. Two-dimensional shape reconstructions. (A) Original image. (B and C)
Reconstructions from SAXS data without and with upper-bound constraint.
(D–F) Reconstructions from autocorrelation data with mmax = 4,10,20. (G–I)
Reconstructions from cross-correlation data with mmax = 4,10,20. (J–L) Re-
constructions from autocorrelation data with upper-bound constraint with
mmax = 4,10,20. (M–O) Reconstructions from cross-correlation data with upper-
bound constraint with mmax = 4,10,20.
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up to a 4.8-Å resolution with lmax = 20, both with and without
enforcing a fivefold symmetry axis, and set N = 42.
As shown in Figs. 1 and 3, the quality of the iterative phasing

solution depends highly on the amount of experimental information
and real space constraints used during the reconstruction process.
In particular, the previously mentioned nonuniqueness manifests as
small perturbations from the original structure, which decrease as
more information is used. Nevertheless, even with a small amount
of experimental information, low-resolution structure determina-
tion is still possible. However, the utilization of extra real space
constraints, such as the upper density bound constraint used here,
can compensate for a lack of reciprocal space information, such as
the omission of cross-correlation data. In each example, the in-
clusion of higher-order terms allows for the recovery of finer details
in the reconstructed models.
The reconstructions of pLGIC have a high degree of similarity to

the target model, especially when symmetry is enforced. Without the
symmetry constraint, the resulting reduction in information content

leads to a lower-resolution 3D reconstruction, with spurious false
details occurring below this resolution range. These false details were
removed for this case by averaging over 24 aligned independent re-
constructions with randomly perturbed starting densities. In contrast,
utilization of the symmetry constraint yields a high-quality recon-
struction without averaging. In particular, we achieved a 6-Å re-
construction with the symmetry constraint and a 12-Å reconstruction
without it; see Table S1 for the reconstruction statistics.

Conclusions
We have demonstrated that it is possible to determine general
structure from fluctuation X-ray scattering (FXS) data with an it-
erative phasing algorithm. The MTIP procedure outlined here
is very flexible, as it allows for one to enforce a combination of
autocorrelation, cross-correlation, or SAXS/WAXS data of various
orders, depending on what information is experimentally available
in each resolution shell. Furthermore, unlike other 3D solution
methods for FXS, this approach does not require symmetry, is not
limited to a binary model, and has a large region of convergence.
The quality of the structural models that can be obtained from

this method depends on the experimental availability and accuracy
of the FXS data and the amount of known prior information. At the
very least, a low- to medium-resolution reconstruction is possible,
but with sufficient information, high resolution can be achieved. In
particular, the algorithm’s performance could be improved by using
additional prior real space information, such as density histograms
or local smoothness constraints, or by making use of any experi-
mentally available higher-order intensity correlations.
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