Variants within the SP110 nuclear body protein modify risk of canine degenerative myelopathy

Emma L. Ivansson1,2, Kate Megquier3, Sergey V. Kozyrev3, Eva Murén5, Izabella Baranowska Körberg4, Ross Swofford7, Michele Koltokkan8, Noriko Tomomura8,9, Rong Zeng6, Ana L. Kolicheski6, Liz Hansen9, Martin L. Katz10, Gayle C. Johnson5, Gary S. Johnson11, Joan R. Coates9, and Kerstin Lindblad-Toh3,8,11

1Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden; 2Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142; 3Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; 4Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536; 5Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211; 6Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65201; and 7Department of Veterinary Medicine, University of Missouri, Columbia, MO 65211

Edited by Stephen T. Warren, Emory University School of Medicine, Atlanta, GA, and approved April 15, 2016 (received for review January 7, 2016)

Canine degenerative myelopathy (DM) is a naturally occurring neurodegenerative disease with similarities to some forms of amyotrophic lateral sclerosis (ALS). Most dogs that develop DM are homozygous for a common superoxide dismutase 1 gene (SOD1) mutation. However, not all dogs homozygous for this mutation develop disease. We performed a genome-wide association analysis in the Pembroke Welsh Corgi (PWC) breed comparing DM-affected and unaffected dogs homozygous for the SOD1 mutation. The analysis revealed a modifier locus on canine chromosome 25. A haplotype within the SP110 nuclear body protein (SP110) was present in 40% of affected compared with 4% of unaffected dogs ($P = 1.5 \times 10^{-7}$), and was associated with increased probability of developing DM ($P = 4.8 \times 10^{-5}$) and earlier onset of disease ($P = 1.7 \times 10^{-5}$). SP110 is a nuclear body protein involved in the regulation of gene transcription. Our findings suggest that variations in SP110-mediated gene transcription may underlie, at least in part, the variability in risk for developing DM among PWCs that are homozygous for the disease-related SOD1 mutation. Further studies are warranted to clarify the effect of this modifier across dog breeds.

degenerative myelopathy | amyotrophic lateral sclerosis | ALS | SOD1 | SP110

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disorder, with 50% of patients dying within 2–3 y of the onset of clinical signs (1). Despite significant progress in the mapping of genetic risk loci, development of successful therapeutic strategies has remained elusive, in part, due to the heterogeneity of the disease both genetically and phenotypically. Further genetic dissection will facilitate the discovery of modifier genes, which influence disease onset and severity, and may point the way to new therapeutic approaches. In this study, we detail the use of a comparative approach to identify a genetic modifier that affects disease penetrance and age of onset in degenerative myelopathy (DM), a canine model of ALS.

The dog is a particularly powerful comparative disease model for genetic studies of complex traits, combining aspects of the tractability of a model organism with the advantages of genetic trait mapping in population isolates, enabling the mapping of genetic risk factors using modest sample sizes (2). Dogs are predisposed to many of the same complex diseases that humans are, share an environment with their human owners, and receive a sophisticated level of medical surveillance and care (3).

ALS and canine DM are similar at a phenotypic, clinical, and genetic level. ALS is characterized by progressive loss of motor function and is characterized by stiffness and slowing of movements, difficulty in speaking and swallowing, muscle atrophy, and severe weakness culminating in paralysis. Mortality is typically secondary to failure of the respiratory muscles. Familial forms of the disease account for 5–10% of cases; the most common age of onset is 47–52 y for familial ALS and 58–63 y for sporadic disease (1). There are several clinical subtypes with variable phenotypic presentation and prognosis.

Over 20 y ago, a mutation in the superoxide dismutase 1 gene (SOD1) was the first genetic risk factor to be identified (4). To date, more than 160 SOD1 mutations involving all five exons have been identified in patients with ALS (alsod.iop.kcl.ac.uk/) (5). SOD1 has been followed by a growing list of ALS-associated genes (6–8), including an intrinsic repeat expansion in chromosome 9 open reading frame 72 (C9orf72) present in patients

Significance

Degenerative myelopathy (DM) is a canine disease very similar to amyotrophic lateral sclerosis (ALS) in humans. We previously showed that DM is a promising model for ALS, because genome-wide association identified a mutation in superoxide dismutase 1 gene (SOD1), a known ALS gene. This mutation found in many dog breeds increases the risk of DM, and the pathological findings and clinical progression of the two diseases are similar. In this study, we identify a modifier gene, SP110 nuclear body protein (SP110), which strongly affects overall disease risk and age of onset in Pembroke Welsh Corgis at risk for DM. Dissecting the complex genetics of this disease in a model organism may lead to new insights about risk and progression in both canine and human patients.

Conflict of interest statement: A DNA test to identify dogs at risk of developing degenerative myelopathy is the subject of four awarded patents (European Patent 2247752, Australian Patent 2009212473, Japanese Patent 5584916, and Mexico Patent 326051) and one pending patent application (Canada Patent 2,714,393). Three of the coauthors (G.S.J., J.R.C., and K.L.T.) are co-inventors listed on these patents and patent applications. A patent application was filed to certain subject matter of this manuscript.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

Data deposition: The National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) www.ncbi.nlm.nih.gov/geo accession numbers for the genome-wide association data presented in this paper are GSE80735 (PWC) and GSE80315 (Boxer). The NCBI Single Nucleotide Polymorphism Database (dbSNP) accession numbers for the illumin MiSeq-detected variants reported in this paper are 198723045–1987230525. The NCBI Sequence Read Archive (SRA) accession numbers for the whole-genome sequences of three PWCs reported in this paper are SRX745862–SRX745864. The GenBank accession numbers for the canine SP110 alternative transcripts reported in this paper are KP245899–KP245902.

1To whom correspondence may be addressed. Email: emma.ivansson@ki.se or kersli@broadinstitute.org.

2Present address: Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden.

3Present address: Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 76, Stockholm, Sweden.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600084113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1600084113

PNAS Early Edition | 1 of 10
with sporadic ALS (9, 10) and 38% of patients with familial ALS (11). A recent study reported that some patients with familial ALS harbor mutations in more than one of the recognized ALS genes, including SOD1, C9ORF72, TARDBP, fused in sarcoma (FUS), and ANG (12). A large-scale exome sequencing study identified TBK1 as an ALS susceptibility gene (13). The same genes associated with familial ALS have been found to harbor mutations in patients with sporadic ALS (7, 8). In summary, the current knowledge supports genetic heterogeneity in ALS etiology and suggests that genetic factors may play a role in patients with apparently sporadic disease.

Like ALS, canine DM is a naturally occurring, progressive adult-onset disease that leads to paralysis and death (14). The first clinical signs usually occur after 7 y of age and include general proprioceptive ataxia and asymmetrical spastic weakness of the hind limbs. Signs then progress to paraplegia, thoracic limb weakness, and, ultimately, flaccid tetraplegia (15). A presumptive clinical diagnosis is made by ruling out potential causes of compressive myelopathy; however, confirmation requires histopathological examination of the spinal cord (16). The pathological features of DM are similar to the pathological features of ALS (17–22). DM has been confirmed in over 24 breeds (16, 23) and presumptively reported in another nine breeds (16). In a previous study of canine SOD1, a SOD1:c.118G→A transition was identified that lead to a W822M missense substitution (E40K) in the homologous codon to the human E40G mutation (17). Homozygosity for the variant allele was associated with risk of developing DM in five dog breeds (17). A separate SOD1 missense mutation has been discovered in Bermese Mountain Dogs, but has only been detected in that specific breed so far (23, 24). Biochemical characterization of the two canine SOD1 mutant proteins indicated the increased propensity to form protein aggregates with retained enzymatic activity, supporting a toxic gain-of-function role in canine DM similar to that role in human ALS (25). Taken together, these findings indicate that DM has potential as a naturally occurring disease model for human SOD1-related ALS.

Since the initial study was published (17), more than 35,000 dogs of multiple breeds have been genotyped for the SOD1:c.118G→A transition. Of the tested dogs, 49% were homozygous for the ancestral allele (G), 24% were homozygous for the risk allele (A), and 27% were heterozygous (GA), but the frequency of the risk allele was highly variable between breeds (23). In the Pembroke Welsh Corgi (PWC) breed, we have been able to confirm DM through histopathology in 53 phenotypically affected dogs: all of these dogs were homozygous for the SOD1 risk allele (23). We noted that among PWCs with two copies of the SOD1 risk allele, there were examples of dogs developing DM at a relatively early age (7–9 y), whereas others reached 15 y of age without any signs of DM. Similarly, all 42 Boxers with DM confirmed through histopathology were homozygous for the SOD1 risk allele (23); however, in contrast to the PWC, there were few examples of Boxers homozygous for the SOD1 mutation that reached old age (>11 y) without developing signs of DM.

Among dogs homozygous for the common DM-associated SOD1 mutation, the variable prevalence and age of onset within and between breeds suggest that additional genetic factors play a role in DM. We hypothesized that the variability in penetrance of the disease phenotype could result from variations at additional genetic loci that modify disease risk, and could be detected by performing genome-wide association (GWA) analysis comparing affected and unaffected dogs homozygous for the SOD1 risk allele. Identification of modifier loci will likely aid in understanding the etiology underlying DM, and might also provide insight into the pathogenesis of ALS. In the current study, we report a modifier locus within the SP110 nuclear body protein (SP110) on canine chromosome 25 (cfa25) that affects risk and age of onset of DM in the PWC breed, and is associated with altered expression

and changes in the gene isoform ratio of SP110 that may be relevant to disease development.

Results

GWA Analysis Detects a Modifier Locus on cfa25. We performed a GWA analysis in at-risk PWC dogs homozygous for the SOD1 risk allele to detect genetic modifier loci that differentiate between dogs that developed the disease early and those dogs that did not develop disease even at an advanced age. By comparing cases with a confirmed diagnosis and early onset of DM signs with older dogs without any signs of the disease, we obtained phenotypes that were clearly defined and well separated. GWA analysis was performed in a final dataset of 15 affected and 31 unaffected PWCs. Quality control left 119,768 SNPs at a total genotyping rate of 99.9% for analysis. There were no outliers in the dataset according to the multidimensional scaling plot (SI Appendix, Fig. S1) and the lambda (genomic inflation factor) was 0.99, indicating successful control of population stratification. The analysis revealed a single locus of association on cfa25, with the strongest associated SNP (BICF2G630104165, located at position canFam2 25:45,443,320) reaching genome-wide significance (P = 2.7 × 10^-8) (Fig. 1). The association in this region was well outside of the 95% confidence interval based on the distribution of effect size beta values (Fig. 1). Removal of the five strongly associated SNPs on cfa25 and any SNPs tagged by these SNPs (r^2 > 0.4) did not alter the association and indicated that the inflation in the quantile–quantile plot reflected association from this region only (SI Appendix, Fig. S2).

Fine-Mapping of the GWA Locus Reveals a Haplotype Associated with Risk. Whole-genome sequencing of three PWCs, two affected by DM at the age of 9 y and one without signs of DM at the age of 14 y, was performed to generate comprehensive information on genetic variants present in this breed. In 10 Mb surrounding the GWA locus, we identified a total of 35,050 SNPs and 10,740 small insertion or deletion of bases (INDELS). To pinpoint the location of the association signal on cfa25, we selected 101 SNPs in the region ch25:42,181,579–46,659,998 from the whole-genome sequencing data for genotyping in the GWA sample set. Adding the 101 SNPs to the GWA analysis revealed another four variants in the vicinity of the top GWA SNP significantly associated with risk of disease (Fig. 2 and Table 1). Genotype data from these five significantly associated SNPs were used for haplotype phasing. The results indicated that the five SNPs form four haplotypes in the PWC breed, with the most common haplotype at an overall frequency of 80% and the second most common at an overall frequency of 14% (Table 2). The second most common haplotype contained the risk alleles from the five associated SNPs and was carried in at least one copy by the majority of cases (nine of 15 cases, 60%) but only one control (one of 35 controls, 3%) in the GWA dataset (Table 3). We designated this haplotype the “PWC risk haplotype.”

The samples included in the GWA analysis were selected to represent the extreme phenotypes: early-onset cases (n = 15, mean age of onset = 9.0 y, SD = 0.7) and older healthy dogs (n = 35, mean age at ascertainment = 13.2 y, SD = 1.33). In this set of samples, the frequency of cases carrying the risk haplotype in at least one copy was significantly different from controls (P = 1.7 × 10^-6, Fisher’s exact test). We next evaluated the frequency of the risk haplotype in an additional set of PWCs with confirmed DM but less strict age of onset (n = 32, mean age of onset = 11.6 y, SD = 1.3), as well as in additional unaffected PWCs (n = 13, eight older than 11 y and five without exact age information), to replicate the association. Again, the risk haplotype was present at a higher frequency in the affected dogs (10 of 32 cases, 31%) compared with the unaffected dogs (one of 13 controls, 8%), but the difference in frequencies was not statistically significant (P = 0.14). Because the phenotypes in the replication dataset were
less stringent, it was expected that the effect would be less strong. Merging the discovery and replication datasets resulted in a significant difference between the frequencies of affected (40%) and unaffected (4%) dogs carrying at least one copy of the risk haplotype ($P = 1.5 \times 10^{-10}$), supporting that the haplotype was associated with risk (Table 3). We noted that of all DM-affected PWCs in the present study ($n = 47$), 16 were heterozygous for the risk haplotype and three were homozygous, whereas among the unaffected PWCs ($n = 48$), the two carriers were heterozygous for the risk haplotype. The population haplotype frequencies based on 273 PWCs without phenotype information (Table 2) illustrated that the population frequency of the risk haplotype was between the frequencies of affected and unaffected PWCs.

The Modifier Affects Age at Onset. Due to the study design, the mean age of onset was lower in the discovery dataset than in the replication dataset (9.0 vs. 11.6 y; $P = 4.7 \times 10^{-11}$). To assess whether having the risk haplotype at the modifier locus affected age of onset, we performed Kaplan–Meier analysis using the development of DM signs as the event and age of onset or age at ascertainment as the time to event. The analysis incorporated both the discovery and replication datasets (47 cases and 48 controls). Comparing individuals with and without the risk haplotype revealed a difference in the probability of developing signs of DM over time ($P = 4.8 \times 10^{-6}$, log-rank test) (Fig. 3). The individuals were all predisposed to DM through the SOD1 risk genotype, but at the age of 11 y, the probability of showing signs of DM was 0.77 in dogs with the SP110 risk haplotype and 0.18 in dogs without the risk haplotype.

The Haplotype Associated with Risk in PWCs Is Common in Boxers. We evaluated whether the PWC risk haplotype also influenced risk of DM in the Boxer breed. Haplotype data were available from 25 Boxers homozygous for the SOD1 risk allele: 15 affected by disease with histopathology confirming DM (mean age of onset = 9.5 y, SD = 2.0) and 10 without signs of DM at the age of 11 y. The haplotype was common in Boxers; all 25 dogs studied carried at least one copy (SI Appendix, Table S4), and 21 (including all unaffected dogs) were homozygous, indicating reduced variability in Boxers for this region of the genome.

The PWC Risk Haplotype Is Present in Dogs of Other Breeds and May Influence DM Risk. Whole-genome sequencing data of dog pools (26) showed variation at all five associated sites across dog breeds, indicating that these variants were not unique to the PWC and Boxer. To investigate the presence of PWC haplotypes in other breeds, we genotyped representatives from 85 dog breeds for the five SNPs. Complete genotyping was achieved for 265 dogs, and the data were used to phase haplotypes. The four haplotypes observed in the PWC were the most common in the other breed dataset, representing 82% of all haplotypes (SI Appendix, Table S4). The remaining 18% consisted of 10 haplotypes, each with an overall frequency of less than 5%. The PWC risk haplotype was detected in 38 breeds with an overall frequency of 25%. The DM status of these dogs was unknown, except for a subset of confirmed DM cases in other breeds with known mutations in SOD1 ($n = 36$). In this subset of cases, 64% carried the PWC risk haplotype compared with 30% of unphenotyped dogs that did not carry the SOD1 mutation ($n = 183$).

The Associated Haplotype Resides Within SP110. The associated haplotype encompassed 12.5 kb of exonic and intronic sequences within the gene SP110 on cfa25 that encodes the nuclear body protein. There were two coding substitutions in the five SNPs with GWA; the SNP with the strongest association (cfa25:45,443,320) was a synonymous substitution, and the variant
Table 1. SNPs with genome-wide significant association in fine-mapping analysis

<table>
<thead>
<tr>
<th>SNP</th>
<th>OR</th>
<th>P_{emmax}</th>
<th>Base pair location</th>
<th>Affected</th>
<th>Unaffected</th>
<th>Minor allele frequency</th>
<th>PWC alleles</th>
<th>LD with topsnp (r^2)</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfa25:45435040</td>
<td>1.8</td>
<td>1.5×10^{-7}</td>
<td>25:45,435,040</td>
<td>0.42</td>
<td>0.02</td>
<td>A G A A A</td>
<td>A</td>
<td>0.74</td>
<td>Intron of SP110</td>
</tr>
<tr>
<td>cfa25:45437568</td>
<td>2.0</td>
<td>3.1×10^{-6}</td>
<td>25:45,437,568</td>
<td>0.38</td>
<td>0.02</td>
<td>T C T T T</td>
<td>T</td>
<td>0.82</td>
<td>Intron of SP110</td>
</tr>
<tr>
<td>BICF2G630104165</td>
<td>1.9</td>
<td>2.7×10^{-8}</td>
<td>25:45,443,320</td>
<td>0.40</td>
<td>0.03</td>
<td>G A A A A</td>
<td>G</td>
<td>1</td>
<td>Synonymous coding SP110</td>
</tr>
<tr>
<td>cfa25:45445891</td>
<td>1.9</td>
<td>6.0×10^{-8}</td>
<td>25:45,445,891</td>
<td>0.42</td>
<td>0.03</td>
<td>G A G —</td>
<td>1</td>
<td>Synonymous coding SP110</td>
<td></td>
</tr>
<tr>
<td>cfa25:4547628</td>
<td>1.9</td>
<td>6.0×10^{-8}</td>
<td>25:45,447,628</td>
<td>0.42</td>
<td>0.03</td>
<td>T A A T T</td>
<td>1</td>
<td>Synonymous coding SP110</td>
<td></td>
</tr>
</tbody>
</table>

Five SNPs displayed genome-wide significant associations in analysis performed by EMMAX incorporating two principal components to adjust for population structure. The SNPs were in strong LD and located in a 12.5-kb region within the gene SP110. The five SNPs in the table were used to construct the haplotypes displayed in Table 2. OR, odds ratio.

at cfa25:45,447,628 was a nonsynonymous substitution (Table 1). The effect of the nonsynonymous variant on the dog protein isoforms was predicted to be neutral using scale-invariant feature transform (SIFT) (27), Polymorphism Phenotyping version 2 (PolyPhen-2) (28), screening for non-acceptable polymorphisms (SNAP) (29), and the consensus classifier PredictSNP (30).

To detect any additional variants on the haplotype, we deep-sequenced the 12.5-kb region in 34 PWCs from the GWA dataset with available DNA. This analysis revealed another 32 SNPs and six INDELS that were merged with the GWA and fine-mapping data and analyzed for association. Three of the additional variants were in perfect linkage disequilibrium (LD) with the top SNP and showed equally strong association: cfa25:45,444,053, cfa25:45,445,120, and cfa25:45,445,768 ($P = 2.7 \times 10^{-8}$). SI Appendix, Table S1 lists association results for all variants detected in the haplotype region. Fig. 4 illustrates the final association results, including the sequence-detected variants, lifted over to the corresponding region of the human genome hg19 (GRCh37). In addition to the two coding variants mentioned above, the variants at cfa25:45,444,053 (translating to ursday of hsa2:231,067,960) and cfa25:45,445,768 (translating to hsa2:231,072,975) were interesting functional candidates because they overlap a hotspot for transcription factor binding.

The Associated Noncoding Variants Show Regulatory Potential. To validate the predicted regulatory potential of SNPs cfa25:45,444,053 and cfa25:45,445,768, we cloned genomic DNA fragments with the variants in a luciferase reporter vector and measured the effect of these alleles on luciferase gene expression after transfection into the Jurkat human T-cell line (Fig. 5 A and B). In addition to cfa25:45,445,768, the second DNA fragment contained variants at cfa25:45,445,751, cfa25:45,445,837, and cfa25:45,445,891 that were in LD with cfa25:45,445,768, and we thus measured the total effect of four SNPs. The choice of cell line was based on the fact that the highest levels of SP110 gene expression were reported in immune cells, including T cells, at BioGPS (31). We found that for both cloned fragments, the risk allele provides lower expression levels compared with the nonrisk allele. The DNA fragment with the cfa25:45,444,053 variant showed repressive properties compared with the vector (Fig. 5A) but, upon cell stimulation, induced the reporter gene expression almost twofold compared with the nonstimulated cells. The fragment with the cfa25:45,445,768 variant enhanced expression over the control vector (Fig. 5B) but did not show a large induction of gene expression upon cell stimulation. This effect may be due to an inducible cell-specific enhancer located in the first fragment, which is more active in, for example, B cells, dendritic cells, or natural killer cells than in T cells. The fact that risk alleles from both fragments are associated with lower gene expression indicates that both SNPs may exert a cumulative effect on the levels of SP110. Because the variant at cfa25:45,444,120 is located in a region that does not translate to the human genome, its regulatory potential could not be predicted by conservation of regulatory marks; therefore, it was not analyzed in the functional experiment.

To investigate the roles of the intronic SNPs at cfa25:45,444,053 and cfa25:45,445,768 as potential regulatory binding sites, we performed electrophoretic mobility shift assays (EMSA). Assay of the risk allele at cfa25:45,444,053 yielded two stronger bands compared with the nonrisk allele, whereas assay of the nonrisk allele yielded a band that was not seen in the risk allele assay (Fig. 5C). These findings may indicate that the risk allele increases binding affinity for yet unidentified transcription factors while eliminating binding of a different factor. EMSA of the SNP at cfa25:45,445,768 revealed one stronger band in the risk allele assay compared with the nonrisk allele assay (Fig. 5D). In addition, we evaluated the top GWA SNP, the synonymous substitution at cfa25:45,443,320. This evaluation revealed two stronger bands in the risk allele assay compared with the nonrisk allele assay, suggesting that a higher binding affinity may be created by the SNP at this location (SI Appendix, Fig. S3). Further experiments will be needed to evaluate the results of the EMSAs quantitatively and to identify the factors involved in differential binding.

Risk Alleles Correlate with Alternative Splicing of SP110 and Change the Balance Between Isoforms. To investigate the roles of the intronic SNPs at cfa25:45,444,053 and cfa25:45,445,768 as potential regulatory binding sites, we performed electrophoretic mobility shift assays (EMSA). Assay of the risk allele at cfa25:45,444,053 yielded two stronger bands compared with the nonrisk allele, whereas assay of the nonrisk allele yielded a band that was not seen in the risk allele assay (Fig. 5C). These findings may indicate that the risk allele increases binding affinity for yet unidentified transcription factors while eliminating binding of a different factor. EMSA of the SNP at cfa25:45,445,768 revealed one stronger band in the risk allele assay compared with the nonrisk allele assay (Fig. 5D). In addition, we evaluated the top GWA SNP, the synonymous substitution at cfa25:45,443,320. This evaluation revealed two stronger bands in the risk allele assay compared with the nonrisk allele assay, suggesting that a higher binding affinity may be created by the SNP at this location (SI Appendix, Fig. S3). Further experiments will be needed to evaluate the results of the EMSAs quantitatively and to identify the factors involved in differential binding.

Table 2. Haplotype frequencies in PWC

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Affected</th>
<th>Unaffected</th>
<th>Replication</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 15</td>
<td>n = 35</td>
<td>n = 32</td>
<td>n = 13</td>
<td>n = 273</td>
</tr>
<tr>
<td>GAAAA</td>
<td>0.57</td>
<td>0.97</td>
<td>0.78</td>
<td>0.85</td>
</tr>
<tr>
<td>ATGTT</td>
<td>0.33</td>
<td>0.01</td>
<td>0.19</td>
<td>0.04</td>
</tr>
<tr>
<td>GCGGT</td>
<td>0.07</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>AAAAA</td>
<td>0.03</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
</tr>
</tbody>
</table>

The four haplotypes present in PWC, and their frequencies across the GWA and replication datasets, as well as the population estimate based on unphenotyped PWC, are shown. Haplotypes were constructed by phasing genotype data for the variants at cfa25:45,435,040, cfa25:45,437,568, cfa25:45,443,320, cfa25:45,445,891, and cfa25:45,447,628 using PHASE (62, 63).
Table 3. Frequency of PWC carrying haplotype ATGGT differed between affected and unaffected individuals

<table>
<thead>
<tr>
<th>Carrier status</th>
<th>Discovery</th>
<th>Replication</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Affected, n (%)</td>
<td>Unaffected, n (%)</td>
<td>Affected, n (%)</td>
</tr>
<tr>
<td>One or two copies of ATGGT</td>
<td>9 (60)</td>
<td>1 (3)</td>
<td>10 (31)</td>
</tr>
<tr>
<td>No copy of ATGGT</td>
<td>6 (40)</td>
<td>34 (97)</td>
<td>22 (69)</td>
</tr>
</tbody>
</table>

P using Fishers two-sided test 1.7 × 10⁻⁵ 0.14 1.5 × 10⁻⁵

The frequency of individuals at least heterozygous for the haplotype ATGGT differed between affected and unaffected PWC; haplotype ATGGT was associated with risk because it occurred in 40% of the cases but in only 4% of the unaffected cases.

regulatory regions with SP110. The NSDTR breed has a higher frequency of the minor allele compared with the PWC breed, which facilitated study of the SNP effect on gene expression.

The splicing of the canine SP110 gene is very complex, and many aberrant alternative transcripts can be detected at low levels (32). We found two major SP110 isoforms: a full-length transcript and a previously unidentified transcript with in-frame skipping of exon 8 (Δ exon 8 transcript) (Fig. 4C and SI Appendix, Fig. S4). Both transcripts include alternative splicing of exon 16, bringing the total of highly abundant isoforms to four (both the full-length and Δ exon 8 transcripts plus minus exon 16). Although all four isoforms are constitutively coexpressed, we found that the levels of exon 8 were dependent on the genotype at cfa25:45,444,053 (Fig. 6 A and B and SI Appendix, Fig. S4A). The risk allele (G) at cfa25:45,444,053 correlated with down-regulation of the full-length transcript and up-regulation of the Δ exon 8 transcript, whereas the nonrisk allele (T) was associated with the opposite trend. The inclusion of exon 16 was independent of genotype and occurred equally in the full-length and Δ exon 8 transcripts. The total SP110 gene expression measured by quantitative RT-PCR with primers common for all isoforms showed a weak trend toward gene down-regulation in the risk allele G, although this trend did not reach statistical significance (P = 0.098) (SI Appendix, Fig. S5A). The risk allele had no effect on SP140 gene expression (SI Appendix, Fig. S5B). Interestingly, the two coding variants, nonsynonymous cfa25:45,447,628 and synonymous cfa25:45,443,320, are located in exons 6 and 9, and noncoding SNPs cfa25:45,445,768 and cfa25:45,444,053 are correspondingly located in introns 6 and 8 (Fig. 4C).

Careful examination of the genomic sequence brought two more variants to our attention: SNP cfa25:45,445,274 in intron 7 and synonymous SNP cfa25:45,445,209 in exon 8. These SNPs are in LD with the aforementioned four SNPs and also showed higher association (SI Appendix, Table S1). Although these two SNPs do not alter the splicing sites directly (33, 34) (SI Appendix, Fig. S6), the variant at cfa25:45,445,209 may be involved in the correct splicing of exon 8 by stabilizing the binding of the SRp55 exonic splicing enhancer factor (35) (SI Appendix, Fig. S7).

The SP110 Locus in Human GWA Studies. The GRASP (36) tool was used to search published GWA studies for supporting associations in human patients. SNPs within or near SP110 were searched for association with ALS specifically, or with the broader “Neuro” phenotype category, which includes other neurodegenerative disorders as well as neurodevelopmental or neuropsychiatric disorders. Twenty-nine (29) associations with a P value less than 10⁻³ were found in 27 unique SNPs, including one association with ALS (SI Appendix, Fig. S8 and Table S3). Due to the role of inflammation in the pathophysiology of ALS, we also searched GRASP for SNPs associated with diseases in the “Inflammation” category, finding five subsignificant associations with three unique SNPs in the region, one of which overlaps both the Neuro and Inflammation categories (SI Appendix, Fig. S8 and Table S3). Overall, the associations in the region within and near the SP110 gene were enriched in the Neuro category, with 28 of 54 (51.9%) of the total associations with P ≤ 10⁻⁴ falling within this category.

The ALS-associated SNP (rs12162384) is located 74 kb downstream of SP110 (P = 3.8 × 10⁻⁸). This association comes from a GWA study of 206 sporadic cases of ALS and 1,190 controls in an Italian population (37). A second, less significant ALS-associated SNP (P = 3.1 × 10⁻⁵) is located 6 kb downstream of SP110 (38). The most significantly associated SNP in the Neuro category near SP110 is associated with autism spectrum disorders (P = 6.8 × 10⁻⁵) (39).

Discussion

DM shares clinical, pathological, and biochemical characteristics with upper motor neuron onset forms of ALS (16, 17, 20, 25). We have previously shown that a mutation in SOD1 was associated with risk of DM in several dog breeds and that, as in patients with SOD1-related ALS, cytoplasmic aggregates containing SOD1 protein were present in the spinal cord motor neurons of affected individuals (17). No SOD1-containing aggregates were found in control spinal cords from wild-type homozygotes. The mechanism

Fig. 3. Kaplan–Meier analysis of time to onset of DM signs comparing carriers and noncarriers of the risk haplotype. Results of Kaplan–Meier survival analysis of PWCs with and without the risk haplotype using onset of DM as the event and age at onset as the time to event are shown. Individuals without an event were censored at the last time point when information regarding signs of DM was available. Carriers of the risk haplotype showed an increased probability of developing signs of DM over time (P = 4.8 × 10⁻⁶, log-rank test). At the age of 11 y, the probability of not showing signs of disease was 0.82 [SE = 0.05; 95% confidence interval (CI) = 0.74–0.92] in dogs without the risk haplotype and 0.33 (SE = 0.10; 95% CI = 0.18–0.61) in dogs with the risk haplotype.
Fig. 4. Associated haplotype and potential regulatory variants lie within the SP110 gene. (A) LiftOver of all variants in the associated region on cfa25 from the dog genome (Broad/canFam2) arrived at chromosome 2 in the human genome (GRch37/hg19), although not all variants had a corresponding site in the human genome (SI Appendix, Table S1). The PWC-associated haplotype is indicated by the gray bar. Association results (logP) are shown in red and black, with SNPs of particular interest for their regulatory potential highlighted in red. Reference Sequence (RefSeq) genes are indicated in blue (genome.ucsc.edu) (67). (B) Zooming in closer on the associated region revealed that the haplotype resided within the SP110 gene and harbored a number of strongly associated sequence variants. The figure shows tracks of ENCODE data (68) with digital DNase hypersensitivity clusters, transcription factor binding sites, H3K27Ac and H3K4Me1 histone marks, as well as the Multiz alignment of the dog genome in the lower track. The ENCODE tracks support the presence of regulatory elements in this area, particularly around the top SNP and toward the end of the haplotype. Highlighted SNPs (in red) include the following: (1) cfa25:45,443,320, a synonymous variant in dog exon 9, evaluated using EMSA; (2) cfa25:45,444,053, a dog intronic regulatory variant evaluated by luciferase assay, EMSA, and allele-specific PCR; (3) cfa25:45,445,209, within dog exon 8, potentially regulating splicing; (4) cfa25:45,445,274, within dog intron 7, potentially influencing splicing; (5) cfa25:45,445,751, a dog intronic variant, evaluated by luciferase assay; (6) cfa25:45,445,768, a dog intronic regulatory variant, evaluated by luciferase assay and EMSA; (7) cfa25:45,445,837, a dog intronic variant, evaluated by luciferase assay; and (8) cfa25:45,447,628, a nonsynonymous change in dog exon 6, predicted to be neutral (genome.ucsc.edu) (67). (C) Schematic structure of the SP110 gene from exon 6 to exon 9 with variants found associated and functionally relevant to gene regulation. The exon (exon 8) undergoing alternative splicing is shown as a red box. The direction of transcription is shown by the red arrow.

behind SOD1 toxicity in ALS pathology is still unclear, although studies in transgenic rodent ALS models suggest that the expression of the mutant SOD1 in nonneuronal cells, such as astrocytes and microglia, has a definitive role in disease pathogenesis (40).

The current study aimed to reveal why some dogs homozygous for the SOD1 mutation were susceptible to DM, whereas others seemed resistant. We identified a modifier locus within the SP110 gene that was associated with an increased probability of developing signs of DM, and an earlier age of onset in PWCs. The risk haplotype usually occurred as a single copy, suggesting that one copy of the modifier allele was sufficient to affect function, thus supporting a dominant effect.

The fact that most Boxers were genetically similar across the SP110 locus implies that the locus is unlikely to modify the risk of DM between individual Boxers homozygous for the SOD1 risk allele, and illustrates that the genetics underlying susceptibility could differ between breeds. Because the haplotype associated with risk in PWC appears very common in the Boxer breed, the locus may contribute to the overall genetic predisposition in Boxers, but it is also possible that there are additional loci acting as modifiers. The enrichment of the PWC risk haplotype among confirmed DM cases in other breeds suggests that the PWC modifier might affect multiple breeds. Future studies, including well-characterized samples from unaffected dogs with the SOD1 mutation, are needed to understand fully the role of the PWC modifier in the Boxer as well as in other breeds.

SP110 is a member of the SP100/SP140 family of nuclear body proteins expressed in a variety of tissues, but most strongly in immune cells (32, 41, 42). It is a component of promyelocytic leukemia nuclear bodies, which form a part of the nuclear matrix and influence transcription, apoptosis, senescence, and response to DNA damage or infection (43).

Mutations in SP110 have been reported in “familial hepatic venoocclusive disease with immunodeficiency,” suggesting that SP110 plays a role in the immune response (44–47). Recently, SP110 was identified as a regulator of the IFN-stimulatory DNA sensing pathway, an important part of the innate antiviral response (48). Interestingly, two other ALS genes, FUS and OPTN, have already been linked to this pathway (49, 50). This recurring connection suggests that the role of SP110 in DM may be
related to the same DNA sensing pathway. Neuroinflammation is a prominent feature in ALS and is characterized by a dialogue between microglia, T cells, and neurons, creating a balance between neuroprotection and neurotoxicity (51).

The functional analysis of selected associated variants indicates that they are involved in SP110 gene regulation. The risk alleles of both intronic SNPs tested by the reporter assay were associated with gene repression. Indeed, when we measured the total expression of SP110 in blood cells, there was a trend toward SP110 down-regulation in the risk genotype. However, this trend did not reach statistical significance. Furthermore, we identified dramatic changes in the balance of different splice transcripts coding for proteins with or without an amino acid region encoded by exon 8. Whereas the full-length transcripts coding for two proteins of 720 and 705 amino acids (with or without exon 16) were repressed in the risk allele, the Δ exon 8 transcripts coding for 703 and 688 amino acids (with or without exon 16) were up-regulated, which may indicate a tightly controlled regulation of SP110 functionality. The exon 8-encoded portion is located in the interdomain linker connecting the homogeneously staining region (HSR) and Sp100, AIRE-1, NucP41/75, DEAF-1 (SAND) domains (52), and it may potentially be involved in the protein–protein interactions, which may result in expression changes of target genes and/or execution of different transcriptional programs.

Interestingly, it was shown recently by yeast two-hybrid interaction screening that SP110 physically interacts with survival of motor neuron 1 (SMN1) and transthyretin (TTR) (53). This interaction is noteworthy because these two proteins are known to be involved in the degenerative neuromuscular disorders spinal muscular atrophy and TTR amyloidosis, pointing to the possibility of common or intersecting pathways affected in neurodegeneration that may result in the development of different yet related neuromuscular diseases.

In addition, SNPs with subsignificant associations with human neuodegenerative, neuropsychiatric, and inflammatory disorders are found within and around SP110 (SI Appendix, Fig. S8). Although the associations in humans do not reach significance, the strong signal in dogs may support the involvement of SP110 in the human disease pathogenesis and warrant a deeper analysis of ALS cohorts.

The fact that ALS displays heterogeneity in both phenotype and genotype complicates the development of treatments. Identifying modifier loci that influence disease severity or age of onset is important because such loci could point toward the final pathways of neurodegeneration rather than initial events, and thereby offer therapeutic opportunities that are shared across patients (8, 38).

To our knowledge, this study is the first proposing the involvement of a nuclear body protein in DM or ALS susceptibility. Establishing the role of the SP110 gene in the pathology of DM as well as the potential role in ALS will require additional investigation, such as evaluating the effect of the risk haplotype on expression of SOD1 and presence of SOD1 aggregates. We believe our finding suggests that variation in the immune response associated with variation in SP110 isoforms can alter the onset and progression of these diseases. Developing an understanding of the mechanism by which variation in SP110 influences DM disease risk could help guide future clinical trials.

In conclusion, DM and ALS are fatal progressive neurodegenerative diseases with no effective treatments and where pathogenesis remains undefined. The aim of the present study was to identify genetic modifiers of disease risk in dogs that are predisposed to DM by being homozygous for the SOD1 risk allele. We report that variants within SP110 modify the genetic risk and age of onset of DM in PWC dogs homozygous for mutant SOD1, and that those variants contribute to changes in the SP110 gene regulation and isoform ratio expressed in blood cells.
Methods

Samples: General. All blood samples in the study were collected from companion dogs in North America, Sweden, or Norway. Samples for genetic mapping were collected by primary care or specialist veterinarians and sent to the University of Missouri or the Broad Institute, obtained from dogs brought to the University of Missouri for euthanasia and necropsy or collected in the Canine Health Information Center DNA Bank (offa.org/chicdnabank.html). DNA was extracted from whole blood or buccal swabs as previously described (23). A presumptive diagnosis of DM was based on clinical signs, and the diagnosis was confirmed by histopathology showing a characteristic pattern of axonal degeneration, myelin loss, and gliosis in the thoracic spinal cord (16). All spinal cord tissues were examined, with phenotype blinded, by the same board-certified veterinary pathologist (G.C.I.). Sample collection protocols were approved by the University of Missouri Animal Care and Use Committee (protocols 6054 and 7349), by MIT (MIT 0910-074-13), and by the Ethical Board for Experimental Animals in Uppsala, Sweden (Dnr C1386 and C41712). Homozygosity for the SOD1 risk allele was determined by pyrosequencing or TaqMan allelic discrimination as previously described (17, 23).

Samples: PWC. The samples used for mapping the genetic modifier in the discovery phase consisted of 15 DM-affected and 35 unaffected PWCs homozygous for the SOD1 E40K risk allele. The affected dogs were selected to have onset of disease signs at the age of 9 y or younger. Among the affected dogs, 14 were confirmed through histopathology of the spinal cord and one dog was diagnosed through MRI ruling out other causes of the clinical signs. The unaffected dogs were free of disease signs at the ages of 11–15 y.

To replicate the findings, we studied an additional set of 32 affected and 13 unaffected PWCs homozygous for the SOD1 risk allele. In the dogs with DM, diagnosis was confirmed by histopathology (n = 28), or presumptively based on clinical signs and MRI of the spinal cord (n = 2) or myelography (n = 2). The age of onset ranged from 9 to 15 y. Of the additional controls, eight were older than 11 y of age and five were reported as “older dogs without signs of DM,” but exact age information was not available.

To obtain a population estimate of haplotype frequencies, 273 additional PWC dogs of varying age were genotyped. Most of these (263 of 273) dogs were homozygous for the SOD1 risk allele, but there was no information regarding DM status.

Samples: Boxer. To examine the modifier locus in the Boxer breed, we evaluated haplotype frequencies in 15 Boxers with DM confirmed through histopathology and 10 Boxers without DM at 11 y of age, all homozygous for the SOD1 E40K risk allele.

Samples: Other Breeds. To examine the modifier locus in additional breeds, we constructed haplotypes in a panel of 265 dogs from 85 dog breeds. Among these samples were 36 dogs that carried the SOD1 risk allele and had a confirmed diagnosis of DM: 8 Bernese Mountain Dogs, 11 Chesapeake Bay Retrievers, 8 German Shepherd Dogs, and 9 Rhodesian Ridgebacks. No phenotypic information was available for the rest of the dogs. For gene expression studies, blood samples collected from 112 healthy NSDTRs living in Sweden or Norway were used.

GWAS Analysis. Samples were genotyped using the Illumina CanineHD Genotyping BeadChip containing more than 170,000 SNP markers. The dataset was filtered for call rate in SNPs (98%) and individuals (95%), deviation from Hardy–Weinberg equilibrium in controls at P < 1 × 10−6, and nonvarying SNPs (minor allele frequency < 0.01). Because all samples were selected to carry two copies of the SOD1 risk allele, this dataset was affected by some population structure. We used several strategies to control for population structure. First, to identify and remove genetic outliers in the population, multidimensional scaling plots were constructed using PLINK (54). Second, relatedness was assessed by GCTA (55), estimating the genetic relationship between all pairs of individuals in the dataset. For each pair of dogs related at >0.25 (half-sibling level) with the concordant phenotype, one dog was removed from the dataset, leaving 15 cases and 31 controls for the analysis. In the final association analysis, population structure was further controlled by using a mixed model approach in Efficient Mixed-Model Association (EMMAX). LD (r2) values between all variants of the associated region were obtained from Haploview. Variants within 1 Mb and in strong LD (r2 > 0.7) with the top SNP were identified using PLINK LD clumping and used as input for haplotype phasing in PHASE version 2.1 (62, 63). For the final phasing of haplotypes, all PWCs (n = 368) with available data for the variants at positions cfa25:45,435,040, cfa25:45,437,568, cfa25:45,443,320, cfa25:45,445,891, and cfa25:45,447,628 were used, regardless of phenotype information and SOD1 status. Differences in the frequency of affected and unaffected PWCs carrying at least one copy of the risk haplotype were assessed using the Fisher exact test as two-tailed in R.

Kaplan–Meier analysis was performed with the event defined as onset of DM signs and time to event defined as age of onset for individuals with an event. For individuals without an event, the age of ascertainment (the last time point when information regarding signs of DM was available) was used to indicate the time point for censoring. The analysis incorporated both the discovery and replication datasets (affected = 47, unaffected = 48). The analysis was performed using the survival package in R, and the difference between carriers and noncarriers of the risk haplotype was assessed using the log-rank test.

For samples from other breeds, genotype data for the variants at positions cfa25:45,435,040, cfa25:45,437,568, cfa25:45,443,320, cfa25:45,445,891, and
adenylation, and adapter li-
gacy. The experiment was repeated three times with four technical replicates for each plasmid. The unpaired Student’s t test was used for statistical analysis.

Deep Sequencing of the Associated Haplotype. To detect all variants present on the associated haplotype, targeted sequencing of the haplotype region was attempted for 39 of the samples used in the GWA analysis. The region was enriched by long-range PCR; three overlapping primer pairs were designed to provide coverage of the region: fragment 1: cfa25: 45,433,855–
45,440,186, amplicon size of 6,332 bp; fragment 2: cfa25: 45,439,220–45,444,832, amplicon size of 5,612 bp; and fragment 3: cfa25: 45,443,583–45,449,113, amplicon size of 5,531 bp. PCR was carried out using the Novagen KOD Hot Start DNA Polymerase kit, according to manufacturer’s instructions, in a reaction volume of 25 μL using 0.4 μM of each primer and 50–100 ng of genomic DNA. Details regarding primer sequences and cycling conditions are available upon request. Post-PCR clean-up was performed using Agencourt AMPure XP Mag- netic Beads (6.6x; Beckman Coulter).

Each fragment was amplified for each individual separately and analyzed on 0.8% agarose gels. Based on visual inspection, equimolar amounts of fragments 1–3 were pooled for each individual. Five hundred nanograms of the pooled DNA was fragmented by Covaris to generate 500-bp fragments and subjected to AMPure beads clean-up (1.6x). End repair, 3′-adenylation, and adapter li-
gacy. The experiment was repeated three times with four technical replicates for each plasmid. The unpaired Student’s t test was used for statistical analysis.

23. Zeng R, et al. (2014) Breed distribution of SOD1 alleles previously associated with

