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We present a 3D topological picture-language for quantum infor-
mation. Our approach combines charged excitations carried by
strings, with topological properties that arise from embedding the
strings in the interior of a 3D manifold with boundary. A quon is
a composite that acts as a particle. Specifically, a quon is a hemi-
sphere containing a neutral pair of open strings with opposite
charge. We interpret multiquons and their transformations in a
natural way. We obtain a type of relation, a string–genus “joint
relation,” involving both a string and the 3D manifold. We use
the joint relation to obtain a topological interpretation of the C∗-
Hopf algebra relations, which are widely used in tensor networks.
We obtain a 3D representation of the controlled NOT (CNOT) gate
that is considerably simpler than earlier work, and a 3D topologi-
cal protocol for teleportation.

quon language | picture-language | quantum information |
joint relation | topological algebra

Topological quantum information was formulated by Kitaev
(1) and Freedman et al. (2). Here, we formulate a 3D topo-

logical picture-language that we call the “quon language”—
suggesting quantum particles. It leads to strikingly elementary
mathematical proofs and insights into quantum information pro-
tocols. In our previous work, we represented qudits, the basic
unit of quantum information, using charged strings in 2D. This
fits naturally into the framework of planar para algebras (3–6).
We call this our “two-string model.”

We also found a “four-string model” in 2D, in which we rep-
resent a 1-qudit vector as a neutral pair of particle–antiparticle
charged strings (3, 4). These charged strings have the proper-
ties of parafermions. The presence of charges leads to para iso-
topy relations, which reflect the parafermion multiplication laws.
Neutral pairs satisfy isotopy, a very appealing property. How-
ever, braiding two strings from different qudits destroys individ-
ual qudit neutrality, and this problem seemed unsurmountable
for multiqudit states. So can one isolate those transformations
that map the neutral pairs into themselves?

Here, we solve this problem by defining “quons.” We embed
the neutral pairs of charged strings representing qudits into the
interior of a 3-manifold. The quon language has the flavor of a
topological field theory with strings. The resulting composites of
3-manifolds and strings give us quon states, transformations of
quons, and quon measurements. However, the composites con-
tain a further aspect: There are topological relations that involve
both the strings and the manifolds. We call them “joint rela-
tions.” These joint relations provide basic grammatical structure
as well as insight into our language.

In String–Genus Joint Relation, we see that, if a neutral string
surrounds a genus in the manifold, then one can remove them
both. In Topological Relations for C*-Hopf Algebras, we use this
joint relation to obtain an elementary understanding of Frobe-
nius and C ∗-Hopf algebra relations stated in Bi-Frobenius Alge-
bras. These relations are key in tensor network theory. In Quon
Language for a Unitary Modular Tensor Category, we see that our
construction even provides four-string structure for unitary mod-
ular tensor categories, with quons a special case.

Basic Grammar
1-Quon Space. We represent a 1-quon by a hemisphere, with no
input points and four output points. Transformations of 1-qudits

have four input and four output points in a cylinder, so we call
this a four-string model. We represent a 1-quon measurement by
a hemisphere with four input points and no output point.

In case a quon is a qudit of degree d , one has a simple rep-
resentation for a 1-quon basis: The interior of a hemisphere
contains two charged strings, each linking two of the output
points. The value of the charge on one string may equal either
0, 1, . . . , d−1 ∈ Zd , while the other string carries the negative of
that charge. For d =2, the quons reduce to Majorana fermions.

The four-string model for a qudit found in section 5.3 of
ref. 3 arose as a natural generalization of Kitaev’s picture (7)
of a spin as a pair of fermions. The four strings arise as we
represent the Pauli matrices X ,Y ,Z by four parafermions. In
our reinterpretation, we replace the two fermions by a pair of
parafermion/antiparafermion unitaries with opposite charge. We
represent transformations on 1-quons as a box with four input
points and four output points, embedded in a 3-manifold. We
describe various bases in 1-Quon Bases.

Multiquon Space. Multiquons have a hemisphere for each
1-quon. A transformation on n-quons has charged strings in a
3-ball with n input handles and n output handles, each contain-
ing four strings. This representation leads to a natural multipar-
ticle structure; it allows us to analyze the full Hilbert space for
multiquons, with each individual quon remaining a neutral pair.

Quons as Topological Algebra. Picture-language for tensor net-
works arose in Penrose (8), Deutsch (9), and in Dür et al. (10).
The Hopf algebra axioms were studied in tensor networks by
Lafont (11). Abramsky, Coecke, and others studied quantum
information extensively from a categorical point of view, and
found many applications in tensor networks (12–18). Vicary and
Reutter applied 2-categories and biunitaries in planar algebras
to quantum information (19, 20).

Our quons live in 3D space and thereby capture categori-
cal structures in two directions. We obtain Frobenius algebras
in the X direction and the Y direction, corresponding, respec-
tively, to the COPY and SUM maps in tensor networks. We
explain these concepts in Bi-Frobenius Algebras. They define the
underlying Hilbert space as a C ∗-Hopf algebra. Moreover, the
string Fourier transform FS is a 90◦ rotation around the Z axis.

Significance

We give a 3D picture-language for quantum information. This
language is based on an inherently 3D pictorial representation
of particle-like excitations (quons) and of transformations act-
ing on them. Mathematical identities and quantum informa-
tion protocols are expressed through deformations of these
pictures. We explore our language, highlighting conceptual
insights, 3Dvisualizations,andsuggestive intuitionthat itmoti-
vates for understanding algebra and quantum information.
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Conjugation by FS maps one Frobenius algebra to the other.
This gives a topological interpretation of the algebraic axioms of
Hopf algebras, as explained in Topological Relations for C*-Hopf
Algebras.

Algebraic relations arise from the invariance of certain ele-
mentary diagrams under topological isotopy. It is significant that
different algebraic conditions have the same topological repre-
sentation. In other words, diagrams that are equivalent up to iso-
topy can have different algebraic meanings when they are located
at different positions. We have already used this philosophy in
our two-string model to design protocols in a topological way
(5, 6). Although 3D braiding appears in many places (e.g., refs.
1, 2, and 21–25), our present work combines charged strings with
3D manifolds.

Using these diagrams, in Teleportation we obtain a 3D repre-
sentation of the controlled NOT (CNOT) map and the quan-
tum teleportation protocol. The teleportation protocol becomes
a topological protocol in the quon language.

Parafermion Algebras
The “parafermion algebra” PFn of order d is a ∗-algebra with
unitary generators cm , m = 1, 2, · · · ,n , which satisfy

cdm = 1 and cmcm′ = q cm′cm for 1 ≤ m < m ′ ≤ n. [1]

Here, q ≡ e2πi/d and i ≡
√
−1. Consequently, c∗j = c−1

j =

cd−1
j , where * denotes the adjoint. Majorana fermions arise

from the case d = 2. The Jordan–Wigner transformation gives
the isomorphism PF2n

∼=Md(C)⊗n to tensor products of d × d
matrices. The parafermion algebra PFn has a basis {cα}. Here,
cα = cα1

1 · · · cαn
n , and αk ∈ Zd . The charge of cα is defined to

be |cα| =
∑n

k=1 αk in Zd . The zero-charged elements PF 0
n form

a subalgebra of the parafermion algebra PFn , namely the neutral
subalgebra.

Parafermion Planar Para Algebras. Given 1≤m ≤n , our diagram-
matic representation for cαm

m , with αm = k , as explained in
ref. 3, is

ckm ←→

∣∣∣∣∣ · · ·
∣∣∣∣∣k
∣∣∣∣∣
∣∣∣∣∣ · · ·

∣∣∣∣∣,
where the mth string is labeled by k . In our notation, we have the
relations

Multiplication:
`

k

∣∣∣∣∣ = k + `

∣∣∣∣∣, d

∣∣∣∣∣ =
∣∣∣∣∣ = 0

∣∣∣∣∣.
Para isotopy:

k

∣∣∣∣∣
∣∣∣∣∣ · · ·

∣∣∣∣∣ `
∣∣∣∣∣ = qk`

k
∣∣∣∣∣
∣∣∣∣∣ · · ·

∣∣∣∣∣ `
∣∣∣∣∣. [2]

The strings between k -charged and `-charged strings are not
charged. Take ζ to be a square root of q , such that

ζd
2

= 1 . [3]

We can interpolate between the diagrams in Eq. 2 as a

Twisted product: k

∣∣∣∣∣
∣∣∣∣∣ · · ·

∣∣∣∣∣`
∣∣∣∣∣ := ζk`

k
∣∣∣∣∣
∣∣∣∣∣ · · ·

∣∣∣∣∣
`

∣∣∣∣∣· [4]

In the parafermion planar para algebra (PAPPA) model, the
charged strings satisfy the following:

• ρπ(c
j ) = ζj

2

cj ,where ρπ is a rotation by π on the plane. Then
ρ2π(c

j ) = q j2cj for the 2π rotation ρ2π .

•

• Let ω = 1√
d

∑d−1
j=0 ζ

j2 . This is a phase, as shown in proposi-
tion 2.15 of ref. 3. Then

Using the above definition of braiding, we can establish the
braided relation that any neutral diagram can move above or
under the strings (see ref. 5). Therefore, the neutral diagrams
can be lifted to the 3D space.

Categorical Approach to the Neutral Part of the Parafermion
Algebra. For readers who are familiar with category theory, one
can consider the neutral diagrams as morphisms in a monoidal
category. The neutral part of PAPPA is the Zd unshaded subfac-
tor planar algebra. It is a Z2 graded unitary fusion category. Its
even part is the monoidal category VecZd , whose simple objects
Xg are labeled by group elements g in Zd , indicating the fusion
rule. It has only one odd simple object τ = τ , where τ is the dual
of τ , such that τ2 = γ= ⊕g∈ZdXg . Thus, γ is a Frobenius algebra.
Then the neutral subalgebra of the parafermion algebra is given
by PF 0

n = hom(τn , τn).

Details of the Quon Model
Quons. An n-quon is represented by n hemispheres. We call the
flat disc on the boundary of each hemisphere a boundary disc.
Each hemisphere contains a neutral diagram with four bound-
ary points on its boundary disk. The dotted box designates the
internal structure that specifies the quon vector. For example,
the 3-quon is represented as

[5]

Here, vj labels a 1-qudit vector given by neutral diagrams with
four boundary points in the hemisphere. We orient the bound-
ary discs of the hemispheres to lie on the X − Y plane in the
3D space.

Transformations. An n-quon transformation is represented by
a neutral element T in PF4n = hom(τ4n , τ4n) embedded in a
3-manifold, isotopic to a 3D-ball. The 3-manifold has n bound-
ary disks on the top and n at the bottom. Each disk contains four
boundary points of T . For example, a 3-quon transformation T
will have the representation

[6]

Isotopy of Neutral Diagrams. In addition to the relations for
charged strings, we allow isotopy of strings in 3-manifolds. We
define a relation for 3-manifolds: If a 3-ball has no diagram
inside, then it can be removed. Moreover, we define a joint
relation between diagrams and 3-manifolds.

Suppose T ∈ hom(τm , τn). Let Bm be an orthonormal basis
(ONB) of hom(τm , τm), and let Bn be an ONB of hom(τn , τn).
We define the relation
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. [7]

Basic linear algebra shows that the second equality always
holds. It says that the relation is well defined up to isotopy of neu-
tral diagrams in 3-manifolds. By this relation, the picture Eq. 6
reduces to a linear sum of pictures of the following form:

. [8]

If we take vi ,wi to be elements in an ONB of hom(1, τ4), then
these pictures represent matrix units of qudit transformations.
Therefore, we obtain a representation of quons and transforma-
tions by neutral diagrams in 3-manifolds modulo relations. To
simplify the notations, sometimes we ignore the 3-manifold, if
there is no confusion.

1-Quon Bases
Qubit Case. The space of 1-qubit states is known as the Bloch
sphere. Vector states lie on the surface. The antipodes for a unit
3 vector ±~n are assigned the eigenvectors of nxX + nyY +
nzZ , where X ,Y ,Z are the Pauli matrices. The eigenvalues
are ±1. The usual convention is to let the eigenvectors of Z
be |0〉 = |0Z 〉 at the south pole and |1〉 = |1Z 〉 at the north
pole. Then there are three fundamental sets of bases of the
1-qubit space for nx =1, etc. They are |0X 〉 =1/

√
2 (|0〉 + |1〉),

|1X 〉 =1/
√
2 (|0〉 − |1〉), and likewise |0Y 〉 =1/

√
2 (|0〉+ i |1〉),

|1Y 〉 =1/
√
2 (|0〉 − i |1〉). The Bloch sphere can be drawn as

The General 1-Quon Case. In the quon model, the three different
ways of connecting the four boundary points give the X , Y , Z
basis of the 1-quon space. For k = 0, 1, . . . , d − 1 ∈ Zd ,

•

•

•

These are the three eigenbases of the three unitary Pauli matri-
ces. The matrices are given diagrammatically in ref. 3, respec-
tively as

[9]

In the quon model, we represent the basis of the 1-quon space
by a pair of strings with opposite charges, embedded in a hemi-
sphere, and exiting the bottom. The algebraic adjoint operation
is given by a charge-inverting, geometric reflection along the Z
direction. Therefore, a measurement is represented by a pair of
strings with opposite charges in the reflected hemisphere

The charge represents the result of the measurement.

1-Quon Clifford Group
The 1-quon transformations {X ,Y ,Z ,F ,G} are generators
of the 1-quon Clifford group. Their algebraic definitions are
given by

X |k〉 = |k + 1〉, Y |k〉 = ζ1−2k |k − 1〉, Z |k〉 = qk |k〉,

F |k〉 = 1√
d

d−1∑
l=0

qkl |l〉, G|k〉 = ζk
2

|k〉. [10]

When we consider a 1-quon as a vector state, the quon transfor-
mations are defined up to a phase. These 1-quon transformations
form a group Z2

d o SL(2,Zd) as shown in ref. 3. The Pauli matri-
ces are given diagrammatically by Eq. 9, and

[11]

n-Quon Clifford Group
Let CX be the controlled X transformation. For the qubit case,
it becomes CNOT. The n-qudit Clifford group is generated by
{X ,Y ,Z ,F ,G,CX }. We represent the quon transformation
CX by neutral diagrams in 3-manifolds. It is more natural to
represent these neutral diagrams in the 3D space. In the 3D
space, we label the four boundary points as 1, 2, 3, 4, corre-
sponding to the order of the boundary points of the 2D dia-
grams. The order indicates the choice of basis in the 3D space.
We discuss more about CX and the 3D representations in Bi-
Frobenius Algebras, String–Genus Joint Relation, and Topological
Relations for C*-Hopf Algebras.

Earlier 2D representations of approximate multiqubit CNOT
gates are complicated. Some even resemble a musical score, as
in figure 3 of ref. 26; see also ref. 27. Exact 2D qudit CNOT rep-
resentations appeared in ref. 28 for odd d , where the complexity
of the representation depends on d .

Resource States
The generalized Bell states for qudits are given by B+ =

d−1/2∑
k∈Zd

|k , k〉 and B−= d−1/2∑
k∈Zd

|k ,−k〉. Diagram-
matically,

Liu et al. PNAS Early Edition | 3 of 6



[12]

The order 3, 4, 1, 2 indicates the action of F 2 on the second qudit.
One can check the identifications by the joint relation. The cor-
responding multiple-qudit generalizations of the Bell states are
known as the Greenberger–Horne–Zeilinger (GHZ) state (29)
and Max. We give their algebraic definitions in Bi-Frobenius Alge-
bras, and we give their 3D representations in Topological Rela-
tions for C*-Hopf Algebras.

Teleportation
In the quon language, we represent the teleportation protocol by
the following diagrammatic protocol using the X basis:

The pair of oppositely-charged strings is neutral; thus it is
defined in the 3D space. It represents the teleportation process in
a topological way. Moreover, it shows the one-to-one correspon-
dence between the diagrammatic representation of this protocol
and the algebraic representation in the teleportation protocol of
Bennett et al. (30), illustrated to the right of the quon-language
diagram.

Bi-Frobenius Algebras
In tensor networks, one decomposes the qudit CNOT gate into
COPY and SUM, defined algebraically by planar diagrams.

Using the “spider” notation of ref. 15, we represent the qudit

transformation
∑
k∈Zd

n entries︷ ︸︸ ︷
|k , k , . . . , k〉

n′ entries︷ ︸︸ ︷
〈k , k , . . . , k | by the diagram

, and we represent
∑
|k|=|j | |~k〉〈~j | by the diagram

. In particular, one represents the state |0〉 by . We have

the duality induced by the Fourier transform F between the two
spiders.

[13]

where n is the number of boundary points. This generalizes the
duality between the resource states analyzed in ref. 5,

|Max〉 = d
1−n
2

∑
|~k|=0

|~k〉, |GHZ〉 = 1√
d

∑
k∈Zd

|k , k , · · · , k〉.

In particular, one represents
∑d−1

k=0 |k〉 =
√
d by .

The adjoint transformations are represented by the vertical
reflections of these diagrams. It is known that both trivalent ver-
tices are Frobenius algebras. That means the following relations

hold for and , and similarly for and :

[14]

[15]

One can flip the boundary points of a black/white spider from
top to bottom or the other way using caps or cups labeled by a
black/white bullet. Thus, each Frobenius algebra has a compat-
ible pivotal structure. However, the two Frobenius algebras do
not share pivotal structures. A composition of the cap and the
cup with different colored bullets is not the identity map. Instead,
it is the antipode map F2

S = F 2, where FS is the string Fourier
transform defined in the introductory section,

[16]

In the quon model, we can represent these maps in a consistent
way by strings in 3-manifolds, such that the algebraic relations
become topological isotopy. The COPY map is represented by

One can check that this diagrammatic definition coincides with
the algebraic definition by Eq. 7. By this representation, the alge-
braic conditions of the Frobenius algebra become topological
isotopy in the quon model.

String–Genus Joint Relation
In case we have a diagram of the form where a closed neutral
string surrounds a genus of the manifold, then we can remove
both, up to a scalar. When m and n are odd numbers, we have

. [17]
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Note that τm and τn are multiples of τ . It is enough to prove the
relation for m = n = 1. In this case, it follows from the relation
Eq. 7.

If m or n is even, by relation Eq. 7, then the diagram is 0.
Thus, if the diagram is a part of a nonzero transformation, then
the m and n have to be odd numbers. In this case, the relation
means that, if there is a circle around a genus of the 3-manifold,
then we can remove the circle and the genus by multiplying a
scalar d−1/2.

Topological Relations for C∗-Hopf Algebras
A more conceptual way to look at pictures in the quon model is
to assign the four boundary points of the quon to the corners of
a square in a plane orthogonal to the Z axis. The white and black
bullets in the spiders indicate diagrammatic operations in X and
Y directions on the 2D plane. For example, if we look at this 3D
diagram from the top along the Z direction, then the picture for
the Z basis in 1-Quon Bases is given by

for k ∈Zd . Here we only draw the boundary circle of the
3-manifold to simplify the picture. The pictures for COPY and
SUM become, respectively,

Similarly, we can represent the white and black spiders as
strings in 3-manifolds in the quon model. The white spiders are
expended in the X direction, and the black spiders are expended
in the Y direction. In particular, the resource states |GHZ〉 and
|Max〉 (for 3-quons) are, respectively,

From this point of view, the Fourier transform is a 90◦ rotation
around the Z axis, which explains the duality of the two Frobe-
nius algebras in Eq. 13 in a geometric way. Moreover, one can
check that the relation Eq. 16 also becomes an isotopy in the 3D
space in the quon language.

Furthermore, this pair of Frobenius algebras satisfies the fol-
lowing additional relations Eqs. 18–21. These relations define
Zd as a C ∗-Hopf algebra, where F 2 is the antipode map of the
Hopf algebra, and the involution is an antilinear map that reflects
the diagrams vertically. Note that, if a pair of Frobenius alge-
bras satisfies these relations, then the underlying d -dimensional
Hilbert space becomes a Hopf algebra. This has been observed
in refs. 11 and 15.

[18]

[19]

[20]

[21]

Now we give an interpretation of these relations as topological
isotopy in 3D. Note that relation Eq. 18 follows from the defini-
tion of the COPY map. By isotopy in our quon model, relations
Eqs. 19 and 20 are exactly the same diagrams as the relation
Eq. 18. The most interesting relation is Eq. 21, and we explain
that relation in detail.

Relation Eq. 21 becomes topological isotopy, when we use the
string–genus joint relation established in String–Genus Joint Rela-
tion, namely the joint relation Eq. 17. Then Eq. 21 is given by the
isotopy in Eq. 22. Thus, we have given a topological interpreta-
tion for the C ∗-Hopf algebra axioms for Zd .

[22]

There is a one-to-one correspondence between C ∗-Hopf alge-
bras and irreducible, depth-two subfactor planar algebras (31,
32). In this case, d is the global dimension of the C ∗-Hopf alge-
bra. Moreover, the even part of the planar algebra is the rep-
resentation category of the Kac algebra. The odd part has only
one simple object, τ , so Eq. 17 also holds. In the above interpre-
tation, we only use (shaded) planar diagrams without braids in
3-manifolds. So this topological interpretation works for any
finite dimensional C ∗-Hopf algebra. From this point of view,
many algebraic properties of C ∗-Hopf algebras reduce to
topological isotopy.

Quon Language for a Unitary Modular Tensor Category
We can define the quon language for any unitary modular tensor
category C , so that the 1-quon basis corresponds to the set of
simple objects OB in C . If we take C to be the unitary modular
tensor category, such that its fusion ring is Zd and its modular
S matrix is qkl , where q = e2πi/d , then we get back the quon
language for qudits defined by PAPPA.

For each X ∈ OB , we obtain a simple object X̃ := X ⊗ X in
C ⊗ C , where X is the dual of X . Take γ = ⊕X∈OBX ⊗ X
in C ⊗ C . It is known that γ=⊕X∈ObX ⊗ X is a Frobe-
nius algebra in C ⊗ C . Thus Pn,+ = hom(1, γn) is a subfac-
tor planar algebra generated by τ , such that γ= τ ⊗ τ . It is
proved in ref. 33 that this planar algebra is unshaded. That
means τ = τ .

Note that hom(1, τ4) ∼= hom(1, γ2). This space has an ONB
given by the canonical inclusion from 1 to (X ⊗ X )⊗ (X ⊗ X ),
for X ∈ OB . We call the generalized single-particle state a
1-quon. Thus, the dimension d of the 1-quon space is the car-
dinality of OB . Furthermore, the string Fourier transform on
the 1-quon space is the S matrix of the unitary modular tensor
category C (33).

We generalize the quon language as follows: We label each of
the four boundary points by the object τ . The diagrams in the

Liu et al. PNAS Early Edition | 5 of 6



3-manifolds are given by morphisms in C ⊗ C . The represen-
tation for an n-quon is given by morphisms in hom(1, τ4) in n
hemispheres as in Eq. 5. The n-quon transformations are rep-
resented by morphisms in hom(τ4n , τ4n) in a 3-manifold as in
Eq. 6. The relations between diagrams and 3-manifolds are also
defined by Eq. 7. Then n-quon transformations also reduce to
a linear sum of the form in Eq. 8 which represent matrix units.
Therefore, the n-quon transformations are transformations on
the dn -dimensional Hilbert space.

In general, the quon language can be defined for any subfactor
planar algebra (21), if we do not require τ = τ . In this case, the

diagrams in the 3-manifolds with 4n boundary points are given by
a shaded planar diagram in the 2n-box space of planar algebras.
We have used this general case to give the topological interpre-
tation of the C ∗-Hopf algebra relations.
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