Fig. S1. Effect of latency l and population size n on the fraction of acceptable mates, for a uniform w distribution of fitnesses conferred, $\beta(1, 1)$. Encounter probably $e = 0.2$; survival probability $s = 0.85$.

$\beta(1,1), s = 0.85, e = 0.2$

Fraction of Potential Mates Acceptable, f^*

Latency, l

- $n = 2$
- $n = 5$
- $n = 10$
- $n = 20$
- $n = 50$
- $n = 100$
- $n = 500$
Fig. S2. The means (green lines) plus or minus one standard deviation (blue lines) of the fraction of acceptable mates for the marginal distributions of s, e, n and l for three different distributions of fitness. (Left) For $\beta (1, 1)$. (Center) For $\beta (3, 8)$. (Right) For $\beta (8, 3)$. The standard deviations are plotted as lines below and above the means. Because no values can be >1 in these graphs, most show the standard deviation below the mean.
(a, d, and g) Sensitivity of the derivative of lifetime fitness at the switch point f^* with respect to the survival probability, s. (a) as a function of survival probability s (x axis), for several sample values of the probability of encounter e (contour lines), and for a latency $l = 10$. (d) As a function of encounter probability e (x axis), for several sample values of the probability of survival s (contour lines), and for a latency of $l = 10$. (g) As a function of latency l (x axis), for several sample values of the probability of survival s (contour lines), and an encounter probability $e = 0.99$. (b, e, and h) Sensitivity of the derivative of lifetime fitness at the switch point f^* with respect to the encounter probability, e. (b) As a function of survival probability s (x axis), for several sample values of the probability of encounter e (contour lines), and for a latency $l = 10$. (e) as a function of encounter probability e (x axis), for several sample values of the probability of survival s (contour lines), and for a latency of $l = 10$. (h) As a function of latency l (x axis), for several sample values of the probability of survival s (contour lines), and an encounter probability $e = 0.99$.

(c, f, and i) Sensitivity of the derivative of lifetime fitness at the switch point f^* with respect to latency, l. (c) As a function of survival probability s (x axis), for several sample values of the probability of encounter e (contour lines), and a latency $l = 10$. (f) as a function of encounter probability e (x axis), for several sample values of the probability of survival s (contour lines), and for a latency of $l = 10$. (i) as a function of latency l (x axis), for several sample values of the probability of survival s (contour lines), and an encounter probability $e = 0.99$.

Other Supporting Information Files

[SI Appendix](#)