Supporting Information

Mulder et al. 10.1073/pnas.0912484106

SI Text

Fig. S1. Regional and interspecies differences in scgn expression. (A) Isolation of intact RNA is essential for gene expression profiling. Therefore, we ran an aliquot of total RNA (1 μg) isolated from microdissected adult mouse brains (RNeasy Mini kit; Qiagen) on a 1.0% agarose gel with GelGreen (Biotium). Sharp 28S and 18S rRNA bands indicate intact total RNA. Liver tissue (L) was used as negative control (see also Fig. 1A). (A1) Real-time qPCRs were validated by preliminary testing of amplification efficacy and by excluding the possibility of genomic DNA contamination in the presence (+) or absence (−) of reverse transcriptase in parallel and running the samples on 1.5% agarose gel. Data for both gapdh, a housekeeping gene used as internal standard, and scgn are shown. (A2) Exon (Ex, solid squares)/intron (lines) map of the scgn gene. Open squares indicate 5′ and 3′ untranslated regions. Arrows indicate the relative position and orientation of primers used to amplify scgn cDNA by qPCR. (A2 and A3) Primer sequences, designed either within Ex11 or in Ex10 (forward) and Ex11 (reverse), used to perform qPCRs. Note that both primer pairs amplify appropriately with primer pair 2 (scgn2, highlighted) providing higher efficacy as demonstrated by an appreciable increase in the amplicon quantity from samples of the olfactory bulb (OB) and medial septum (MS). Data on gapdh is provided as positive control. Abbreviations in A1–A4: Amg, amygdala; CB, cerebellum; CPu, caudate putamen; Ctx, cerebral cortex; HC, hippocampus; NTC, nontemplate control. (B) scgn in situ hybridization signal from adult mouse brain. A scgn mRNA distribution map available in the Allen brain atlas (www.brain-map.org; image series: S83549) was color coded and modified to optimally visualize olfactory, cortical, and ventral pallidal areas harboring pronounced scgn expression. Colors from blue toward red correspond to incrementing scgn expression levels. (B1 and B2) scgn immunoreactivity in sagittal sections of adult mouse (B1) and gray mouse lemur (B2) brain. (B3) List of abbreviations used in B1 and B2. [Scale bars, 1 mm (B1 and B2) and 2.5 mm (B2).] Nomenclature for mouse and lemur brains was adopted from Paxinos and Franklin (1) and Bons et al. (2), respectively.
Fig. S2. Antibody validation by scgn expression profiling in neuroendocrine cells of peripheral organs. (A) Partial amino acid (aa) sequence alignment of mouse, rat, lemur, and human scgn. Phylogenetically conserved aa residues are shown in red. Gray box indicates a C-terminal sequence used to generate antibodies with high homology across mammals (mouse, 96%; rat, 96%; gray mouse lemur, 99%; as compared to human). (B and B1) Protein array containing 192 protein epitope signature tags (PrESTs) were used for initial screening of antibody specificity. Note that the anti-scgn antibody used in the present study (HPA006641) selectively recognizes its cognate PrEST, while no binding to other peptide fragments present in this protein microarray was detected (3). (C) We have further tested the specificity of our antibody by performing immunoprecipitation (IP) experiments. Western blot analysis (IB) of tissue lysates from adult mouse OB revealed a single immunoreactive band at the predicted molecular weight of scgn. We then performed IP without primary antibody (bead) and with incrementing primary antibody concentrations (Ab/H11005 2.5 or 5.0/Ab/H9262 L), while keeping the concentration of GammaBind G Sepharose beads (GE Healthcare) used to precipitate the primary Ab constant. Subsequently, membranes were reprobed with scgn primary Ab. Incrementing primary Ab concentrations in IP experiments led to a proportional increase in enriched scgn and, conversely, to a gradual scgn depletion of remnant supernatants (sup.) of whole cell lysates subjected to analysis. These data support that the polyclonal anti-scgn antibody used throughout this report recognizes a single target molecule. (D–G2) scgn has recently been cloned from neuroendocrine organs with highest expression in cells of the pancreatic islands of Langerhans (iLh) (4) and neuroendocrine cells of other organ systems including the gastrointestinal tract (5, 6). Therefore, we have further validated our anti-scgn antibody by means of high-resolution histochemistry on 16-μm thick cryostat sections of the mouse pancreas (D–D2), stomach (E–E2), and small intestine (F and F1). Liver tissue, lacking appreciable scgn expression (Fig. 1A), served as negative control (G–G2). In the pancreas, scgn immunoreactivity revealed β cells of iLh (D–D2) and small clusters of putative endocrine cells (ecs) in cells of the plexus of Meissner (pM). (F and F1) Similarly, in the small intestine scgn immunoreactivity is seen in several layers including cells lining the crypts (cr) and the muscularis mucosa (mm). Hoechst 35,528, a nuclear dye, has been applied to reveal tissue architecture. Asterisks in G1 and G2 mark blood vessel. m, mucosa; sm, submucosa; v, villi. [Scale bars, 10 μm (D1), 30 μm (D2, E1, F1, and G2), and 120 μm (D–G).]
Fig. S3. Distribution of scgn-expressing neurons in rodent and primate brain. Morphometric maps of scgn° neurons have been assembled by inspecting serial sections of adult mouse (A) and gray mouse lemur (B) brains (n ~ 2–5 per species). Solid red circles denote the location of scgn° neurons. The density of labels alludes to the relative density of scgn° cells. We have conformed to the nomenclature of Paxinos and Franklin (1) and Bons et al. (2) for mouse and gray mouse lemur brains, respectively. Abbreviations are referred to in Table S1. Semiquantitative assessment of scgn-immunoreactive neuron and axon density in particular brain regions are given in Table S2. [Scale bars, 1 mm.]
Fig. S4. Identity and synaptic afferents of scgn-expressing neurons in the olfactory bulb of GAD67neo−/− mice. GAD67-GFP (neu) mice (GAD67neo−/− mice) were used to explore whether scgn is present in GAD67-expressing neurons. (A) GFP signal concentrated in the granule, mitral, and plexiform layers of the OB with a sharp decrease, but not disappearance (see also Fig. 2 D2 and D3), in GFP fluorescence in the glomerular layer (GL). Solid arrows indicate the general position of A1 and B. scgn frequently coexists with calretinin in gfp− neurons (A1, solid arrowheads) but is excluded from calbindin D28k−/gfp− Blanes cells (B, open arrowheads) in the granular and mitral layers (ML) of the OB. The somatodendritic axis of scgn− periglomerular cells (PGCs) receives both inhibitory (GAD\textsubscript{65/67}−, C) and excitatory (VGLUT1−, D) afferents. [Scale bars, 25 μm (A1–D) and 250 μm (A1).]
Fig. S5. Topographic organization and spatial relationships of limbic areas containing scgn-expressing granule cells. The dorsal and ventral tenia tecta (dT/VT) form the anterior extremity of a continuum of nuclei containing, among other cell types, neurochemically and cytoarchitecturally similar granule cell-like neurons (7, 8). The vTT is differentiated from the dTT territory by substantial differences in its cell type composition (7). The dTT and its posterior continuation, the septohippocampal nucleus (SHi), show clearly laminated structures with a comprehensive layer of granule cells and thus are cumulatively referred to as the AHC (7). Rostrally, the dTT extends in a mediodorsal direction through a curvature around the genu of corpus callosum (gcc) and its cell mass transits into the IG. The IG is a thin longitudinal supracallosal nucleus extending up until the caudal extremity of the corpus callosum where it folds around the splenium of the corpus callosum (scc) to form the fasciola cinerium (FC) and DG. Arrows indicate major fold directions along the longitudinal axis of the mouse brain. Gray box indicates the general location of cell groups cumulatively classified as AHC (7). CA1, subfield CA1 of the hippocampus; vhc, ventral hippocampal commissure.
Fig. S6. Neuronal diversity in the IG, neighboring neocortical territories, and anterior hippocampal continuation. (A–C) Reconstruction of biocytin-filled neurons was performed after capturing serial images in orthogonal stacks by confocal microscopy. The soma of neurons coexpressing scgn is drawn in blue, whereas that of scgn/H11002 neurons is in black. Dendrites and putative axons are depicted in black and red colors, respectively, in the coronal plane. While the dendritic tree of all cells was largely intact, only local segments of axon collaterals have been traced until the descending axon entered the cc in most cases. Solid green circles indicate the location of scgn/H11001 neurons in relation to reconstructed cells in the indusium griseum (A–A3), anterior hippocampal continuation (B), and neighboring cingulate cortex (C–C4). Note that cell 082611L was relatively deep in the slice preparation, and although its cytoarchitectonic features correspond to morphological criteria for scgn neurons, it remained unstained when using whole slice histochemistry. Solid gray lines are schematic representations of regional and surface boundaries. (D–D4) Representative whole-cell current clamp records of biocytin-filled neurons. The discharge pattern of scgn/H11001 neurons (D and D1) is typically characterized by an initial high-frequency action potential (AP) pair followed by adaptation of the AP frequency (see also Fig. 4), and is reminiscent of those seen in dentate granule cells (9, 10). In contrast, AP signatures of scgn/H11002 neurons range from AP frequency and amplitude accommodation (D2) to high discharge frequencies (D3 and D4). flc, fissure longitudinalis cerebri. (Scale bars, 20 μm.)
Fig. S7. Scgn expression in basal forebrain territories of the gray mouse lemur. (A) Choline-acetyltransferase (ChAT)− projection neurons of the primate basal forebrain complex, including the horizontal diagonal band of Broca (HDB), express scgn. (A1) While the majority of cholinergic neurons coexpress ChAT and scgn (solid arrowheads), a proportion (~5%) of cholinergic cells in the medial septum (MS) lack this CBP (open arrowhead). (A2) Similarly, scgn coexists in cholinergic projection neurons (solid arrowhead) of the magnocellular basal nucleus (MBN). However, scgn is heterogeneously expressed in cholinergic interneurons (open arrowhead)—see also A4 otherwise—in the nucleus putamen (Pu). (A3) The dorsomedial substantia innominata contains large scgn−/ChAT+ cholinergic neurons, whereas single labeled scgn− or ChAT− cells reside in the laterobasal segment of this area. (A4) scgn− neurons coexpress CR (solid arrowheads) but not CB (open arrowhead) in the ventral pallidum (VP). (A5) Robust scgn immunoreactivity concentrates in the nucleus accumbens (Acb), while a more homogenous distribution of scgn− neurons is apparent in VP territories. (A6) scgn is largely absent from cholinergic interneurons (open arrowheads) in the nucleus caudatus (CdN). Note scgn immunoreactivity in the septohippocampal nucleus (SHi) and in rostrally migrating neuroblasts. Dashed line encircles the RMS. ac, anterior commissure; GAD65/67, glutamic acid decarboxylase 65/67 kDa isoforms; TH, tyrosine hydroxylase. [Scale bars, 20 μm (A3), 35 μm (A1 and A3), 60 μm (A1, A2, and A4), and 100 μm (A3 and A5).]