Supporting Information

Benjamin et al. 10.1073/pnas.1611431114

Fig. S1. Schematic summary of prior findings. Kmt2d^+/βGeo mice on a mixed C57BL/6J and 129SvEv background demonstrated a global deficiency of the open chromatin mark H3K4me3 in association with decreased neurogenesis in the GCL of the DG (Middle) compared with littermate Kmt2d^+/+ mice (Left). These defects were rescued with AR-42 (Right) (6), a class 1 and 2 histone deacetylase inhibitor (24), which has recently been shown to inhibit HDAC5 in liver cells (49).

Fig. S2. Kmt2d^+/βGeo mice demonstrate a generalized tendency toward down-regulation of gene expression. Even when data were explored below the level of statistical significance for the top 1,000 most highly expressed genes and put into bins, there was a generalized tendency toward down-regulation of gene expression at all fold change (FC) bins (n = 6 per group).
Fig. S3. The Kmt2d probe-set that shows differential expression from microarray analysis is downstream of the SET domain. Schematic of the probe-set that overlaps the last exon of Kmt2d.

Fig. S4. The rationale describing how a KD could be used to counter the epigenetic defect in Kmt2d+/\betaGeo mice. There are multiple ways to increase blood levels of BHB (direct injection, KD, and exercise). Because BHB is an endogenous HDACi, it may rescue the epigenetic abnormality seen in Kmt2d+/\betaGeo mice, and thereby provide similar therapeutic benefits as AR-42 in Kmt2d+/\betaGeo mice (Fig. S1).

Fig. S5. BHB is elevated in the serum and brain of Kmt2d+/\betaGeo mice on a KD. (A) Serum BHB levels in Kmt2d+/\betaGeo mice (n > 10) and littermate controls (n > 10) after 2 wk of the KD. (B) Brain BHB levels in Kmt2d+/\betaGeo mice (n ≥ 5) and littermate controls (n ≥ 5) after 2 wk of the KD. *P < 0.05; ††P < 0.001.
Fig. S6. Two markers of renal function are normal in Kmt2d+/βGeo mice. (A) Creatinine levels in young mice (6 wk old) do not show a significant difference (Welch’s t test) between Kmt2d+/βGeo mice (n = 11) and littermate Kmt2d+/+ mice (n = 14), and all values are within the range of normal levels for mice of this age (dotted lines). (B) Blood urea nitrogen (BUN) levels show no significant difference (Welch’s t test) between Kmt2d+/βGeo mice (n = 11) and littermate Kmt2d+/+ mice (n = 14), and all values are within the range of normal levels for mice (dotted lines). N.S., not significant, P > 0.05.

Fig. S7. Crebbp+/- mice do not share metabolic alterations found in Kmt2d+/βGeo mice. Rubinstein-Taybi syndrome is another Mendelian disorder of the epigenetic machinery, caused by deficiency of a histone acetyltransferase (CREBBP), which secondarily leads to a global deficiency of histone acetylation (14). The histone tails have previously been suggested to act as a potential acetyl-CoA sink (15). Furthermore, other studies have linked NAD+ and histone acetylation (16). A global deficiency of histone acetylation could therefore potentially lead to chronic acetyl-CoA elevation, thereby driving beta-oxidation and secondarily increasing NADH/NAD+ ratio in both KS and Rubinstein-Taybi syndrome. BHB levels from urine show a significant (P < 0.05) elevation in Kmt2d+/βGeo mice compared with Kmt2d+/+ and Crebbp+/- mice (13) (n = 6–8 per group). However, no significant differences were seen between Kmt2d+/+ and Crebbp+/- mice (P = 0.36). *P < 0.05.
Fig. 5B. Lactate/pyruvate ratio is abnormal in Kmt2d^{+/βGeo} mice. (A) Both BHB/AcAc and lactate/pyruvate ratios are controlled by the NADH/NAD⁺ ratio. (B) In addition to the increased BHB/AcAc ratio, serum analysis from KD-treated animals shows Kmt2d^{+/βGeo} mice had a significant increase in the lactate/pyruvate (Lac/Pyr) ratio compared with KD-treated Kmt2d^{+/+} littermates (n = 12–15 per group). *P < 0.05.
Fig. S9. Exogenous BHB treatment rescues the neurogenesis defect in Kmt2d^{+/βGeo} mice. (A) Several distinct doses (0, 2.5, 5, 10 mM/kg) of BHB were injected i.p., followed by urine collection 1.5 h later (approximate time of BHB peak levels) (19). The 5 mM/kg dose shows a BHB level that resembles the urine BHB profile (approximated in this figure with dashed lines) from KD-treated mice (n = 22 total). (B) A single 5 mM/kg BHB injection (9 AM) of BHB per day (for 2 wk) yielded comparable peak levels as mice on a KD but less total daily exposure, as seen from a urine time course (12 h; n = 4–5 per group). Also shown is the saline vehicle group. (C) Kmt2d^{+/βGeo} mice injected with a once-daily dose of 5 mM/kg BHB (for 2 wk) show a significant increase in the EdU⁺ cell numbers in the GCL of the DG of the mice compared with Kmt2d^{+/βGeo} mice injected with saline vehicle. However, this rescue did not show the same magnitude of rescue compared with the EdU⁺ cell numbers from KD treatment (n = 5–12). (D) Mice implanted with a 2-wk BHB pump that provided 2.5 mg/mL BHB at a rate of 0.25 μL/h showed a significant (P < 0.05) increase in BHB measured from urine (n = 10–12 per group). However, although the pump provided a constant stream of BHB, the urine BHB did not reach comparable levels to what was seen in mice on a KD (1–2 mM BHB). (E) The combination of osmotic pumps and three injections of 5 mM/kg BHB at 9 AM, 1 AM, and 5 AM showed a more similar BHB profile to KD-treated mice when treated for 2 wk (n = 4–5 per group). (F) When treated with this higher daily dose of BHB for 2 wk, we saw a more pronounced rescue of EdU⁺ cell numbers in the DG GCL in Kmt2d^{+/βGeo} mice, which more closely mirrors the rescue seen after KD treatment. (G and H) We further confirmed the neurogenesis rescue at both low and high doses of BHB (treated for 2 wk) by looking at the fraction of DCX⁺ cells in the DG GCL and found that this measure showed similar neurogenesis rescues compared with EdU analysis (n = 7–10 per group). *P < 0.05; **P < 0.01; †P < 0.001. N.S., not significant, P > 0.05.
Fig. S10. Control experiments for behavioral testing. (A) The latencies to find the hidden platform during the 5 d of training showed a significant interaction ($P < 0.05$) between genotypes, but no significant effect from treatment ($P = 0.204$), as examined by a repeated-measures ANOVA. (B) The latencies to find the platform during the flag training did not show a significant interaction for either genotype or treatment ($P = 0.142$), as examined by a repeated-measures ANOVA ($n = 19–32$ per group). (C) Kmt2d+/βGeo mice did not show a significant difference from Kmt2d+/+ mice on the regular diet, and did not demonstrate decreased activity on the KD in an open-field test, whereas Kmt2d++ mice did show an increase ($P < 0.05$) in activity compared with Kmt2d+/βGeo mice only when both were treated with the KD. There were no differences for grip strength for either genotype or treatment ($n = 5–15$ per group). (D) Kmt2d+/βGeo mice did not show a significant difference from Kmt2d+/+ mice on the regular diet, and did not have decreased activity on the KD, as measured by an open field test, whereas Kmt2d++ mice did show an increase ($P < 0.001$) in activity compared with Kmt2d+/βGeo mice only when both were treated with the KD ($n = 13–26$ per group). The increased activity seen in wild-type animals on KD has been previously described (50). *$P < 0.05$; ††$P < 0.001$.

Benjamin et al. www.pnas.org/cgi/content/short/1611431114