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Supplemental Experimental Procedures 
 

Experimental Preparation 

Two adult male rhesus macaques (Macaca mulatta) participated in the study (Monkey A 

and Monkey S, 9.5 kg and 8.4 kg, respectively at the start of the experiments). Both animals 

had been used previously in other experiments studying eye movements, and identical training 

protocols were used for both animals (see below).  Prior to behavioral training, each animal was 

instrumented with a head-restraint prosthesis to allow fixation of head position and tracking of 

eye position. Each monkey was behaviorally trained for several weeks in an unlit sound-

attenuated electromagnetically shielded room (ETS Lindgren). Following behavioral training, we 

implanted a low-profile recording chamber (Gray Matter Research, MT) in a craniotomy made 

over the right pre-arcuate cortex of each animal using image-guided stereotaxic surgical 

techniques (Brainsight, Rogue Research, Canada). A semi-chronic microelectrode array 

microdrive (SC32-1, Gray Matter Research, MT) was then inserted into the recording chamber 

and sealed (see below). Prior to each behavioral session, we advanced electrodes in 15 µm 

increments until up to 30 neurons were isolated. Then we recorded from isolated neurons while 

each monkey performed up to 500 trials of randomly interleaved memory- and visually-guided 

delayed saccades to one of eight targets for a liquid reward (1). Eye position was constantly 

monitored with an infrared optical eye tracking system sampling at 120 Hz (ISCAN). After the 

completion of experiments and all 32 electrodes had been advanced into white matter, we 

registered previously measured absolute cortical depths to a common zero point across the 

array using an iterative algorithm (2).  

 

Behavioral Tasks 

Each monkey performed a memory-guided oculomotor delayed response (mODR) task to 
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one of eight isoeccentric targets for a liquid reward (Fig. 1A) (1). All trials began with the 

illumination of a central fixation target, on which the animal needed to maintain fixation for a 

baseline period (500 - 800 ms). After the baseline period, a spatial cue was flashed for 300 ms 

at a peripheral location to indicate the target of the saccade. After a delay period (typically 1000-

1500 ms for both animals), the central fixation square was extinguished, providing the Go signal 

for the animal to saccade to the remembered location of the peripheral target. Within 100 - 150 

ms of the saccade, the spatial cue reappeared and the animal had to maintain fixation on the 

cue for an additional 300 ms. A fluid reward was then delivered. On each trial, a spatial cue was 

presented at one location on a grid of eight locations spaced 10º around the central fixation 

target. Spatial cue locations were interleaved trial-by-trial in equal proportions.   

 

A trial was aborted if the monkey failed to align its gaze within 2° of the center of the fixation 

target before the Go command or within 2° of the center of a spatial cue target following an 

initially correct saccade after Go. When an abort was detected, all visual stimuli were 

extinguished immediately, no reinforcers were delivered, and the trial was restarted after a 1200 

- 1800 ms intertrial interval. Both monkeys rarely aborted trials (4% for Monkey A, 5% for 

Monkey S). Aborted trials were excluded from further analyses.  

 

Each monkey also performed a visually-guided oculomotor delayed response (mODR) task 

(1).  In this task, events proceeded as in the memory-guided task, except that the spatial cue 

was not flashed, remained illuminated throughout the delay period and saccade, and was 

extinguished after the trial was completed.  Memory-guided task trials and visually-guided task 

trials were randomly interleaved trial-by-trial with equal proportions.  

 

During each behavioral session, Monkey A performed 240-300 delayed saccades, and Monkey 

S performed 400-500 delayed saccades. Data reported here were collected after at least 3 
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weeks of training on the saccade tasks. Monkey A’s reaction times (RTs) differed significantly 

across the mODR (211 ± 0.6 ms s.e.m.) and vODR tasks (171 ± 0.5 ms s.e.m.) (p<0.05, t-test), 

while Monkey S’s reaction times did not differ across the mODR (189 ± 0.3 ms s.e.m.) and vODR 

tasks (188 ± 0.3 ms s.e.m.). 

 

Microelectrode Microdrive Design 

All data reported here were obtained using a semi-chronic microelectrode array microdrive, 

SC32-1 (Gray Matter Research, MT) (2–5). The SC32-1 is a modular, replaceable 

micromanipulator system capable of independent bidirectional control of 32 microelectrodes. 

The system is designed to be semi-chronically implanted within a recording chamber system, 

and can be secured with acrylic for additional protection. Electrodes are spaced by 1.5 mm. The 

system was implanted for approximately two months in each animal and permitted long-term 

recordings of neuronal activity. The SC32-1 utilizes a screw-driven mechanism to bi-directionally 

control electrode position along a single axis with a range up to 20 mm. Each actuator consists 

of a lead screw, an eccentric brass shuttle mounted to the electrode, and a compression spring. 

Following implantation, single electrodes could be moved with an accuracy of approximately 15 

µm and allowed sufficient control to stabilize isolated recordings of spiking activity from 

individual neurons. 

 

Recording Protocol 

In each animal, we advanced electrodes to maximize the yield of isolated single unit recordings 

during each recording session.  The strategy employed was refined over the course of the 

experiments but followed the same general outline. At the time of implantation, the initial 

position of each recording electrode was recessed approximately 1 mm within the drive. 

Electrodes were advanced through a silastic membrane in the recording chamber, the dura 
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mater and pia before entering the cortex. After piercing the dura, each electrode was advanced 

in sequential 15 µm increments 10 minutes apart, to give the electrode time to settle in the 

tissue. After each movement iteration and settling interval, we obtained a 60 second recording 

while the animal sat quietly with the lights on. Action potentials were first recorded at a median 

depth of approximately 3 mm beyond their initial position (2.23 mm in Monkey A; 3.04 mm in 

Monkey S). Electrodes were gradually advanced across sessions (mean 34 µm/day in Monkey 

A; 100 µm/day in Monkey S) until action potentials were no longer present, indicating passage 

into white matter. We obtained neural recordings by advancing the electrodes up to a median 

distance of 6 mm from their initial position. Neural recordings during the performance of the 

behavioral task were first obtained in Monkey A when clearly isolated single unit activity was 

present on all channels.   In Monkey S, neural recordings were also obtained at more superficial 

depths, before isolated single unit activity was present. 

 

Data Acquisition 

Eye position was constantly monitored with an infrared optical eye tracking system sampling at 

120 Hz (ISCAN). Eye positions were digitized at 1 kHz. Visual stimuli were presented on an 

LCD screen (Dell Inc) placed 34 cm from the subjects' eyes. The visual stimuli were controlled 

via custom LabVIEW (National Instruments) software executed on a real-time embedded 

system (NI PXI-8184, National Instruments). Neural recordings were made with glass-coated 

tungsten electrodes (Alpha Omega, Israel) with impedance 0.7-1.5 MΩ measured at 1 kHz (Bak 

Electronics, MD). Neural signals were preamplified (10x gain; Multichannel Systems, Germany), 

amplified and digitized (16 bits at 30 kHz; NSpike, Harvard Instrumentation Lab), and 

continuously streamed to disk during the experiment (custom C and Matlab code). 

 

Local field potential (LFP) waveforms were computed from the broad-band activity by median-

filtering the raw, broad-band recording with a 1.5 ms window to suppress large amplitude 
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spiking events, low-pass filtering at 300 Hz and down-sampling at 1 kHz. Multiunit activity 

(MUA) waveforms were computed by high-pass filtering the raw data at 300 Hz and maintaining 

the original 30 kHz sampling rate. Single-unit activity (SUA) was isolated by thresholding MUA 

waveforms at 3.5 standard deviations below the mean, performing a principal component 

analysis of putative spike waveforms, over-clustering these waveforms in PCA space using k-

means and then merging clusters based on visual inspection. 

 

Data Analysis  

 

We investigated distributed firing rate dynamics during WM using two dimensionality reduction 

approaches: principal component analysis (PCA), and a targeted dimensionality reduction 

(TDR) approach, which maps population activity into a low-dimensional state space that 

captures variability due to target location and delay type (6). PCA provided a compact and 

informative (yet fundamentally qualitative) description of our neural data that enabled us to form 

hypotheses about task-related differences between populations. Then in separate analyses of 

single unit responses, we tested these hypotheses through the use of permutation testing to 

quantify the significance of each unit’s spatial tuning and selectivity for the memory or visual 

delay condition. We then used TDR to confirm that task-selective single unit responses are 

representative of task-related modes at the population level. We estimated the noise correlation 

for each pair of neurons under each delay condition by converting spike counts during the time 

interval of interest on each trial to target-specific z-scores, and then estimating Pearson’s 

correlation coefficient between the z-score pairs across all trials (7). Finally, we estimated spike-

field coherence (SFC) as a function of frequency and time using multitaper spectral estimation 

(8). 
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Assessing Recording Stability 

 After implanting the microdrive in each animal, we monitored the variance of LFPs and MUA 

across the array over time for evidence of the brain’s inflammatory response. In Monkey A, we 

monitored LFP and MUA variance on all channels while holding electrodes at a constant depth 

for two weeks after implantation, but did not observe any systematic changes over time. While 

advancing electrodes in both animals, we continued to observe robust LFP and MUA signals 

across a majority of the 59 post-implantation days in Monkey A and 68 days in Monkey S. 

 

Single Unit Isolation 

Spike events were extracted and classified from the broadband activity using custom Matlab 

code (The Mathworks) during each recording session and resorted offline. To account for 

nonstationarity in the recordings, spike classification was done on a 100 s moving window, and 

clusters were tracked across windows. Occasionally there were periods when clusters were not 

isolated. Trials during those periods were marked, and these data were not subject to further 

analysis. 

 

Depth Registration 

After the completion of experiments and all 32 electrodes had been advanced into white matter, 

we registered previously measured absolute cortical depths to a common zero point across the 

array (i.e. the cortical surface) using an iterative algorithm, previously described in (2). First, for 

each electrode penetration, we generated a high spatial resolution map of LFP variance as a 

function of depth by estimating the LFP variance during the 60-second recording after each 15 

µm movement iteration while the animals were sitting quietly with the lights on. Then we applied 

a variance stabilizing transformation to each channel’s LFP variance depth profile to correct for 

minor differences in scale due to variable electrode impedances across the array. This 
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transformation involved calculating the logarithm of the LFP variance at each depth and then 

rescaling log variance data to range from 0-1 on each channel. Next, we identified the alignment 

for each channel pair that minimized the pairwise Euclidean distance between their normalized 

variance depth profiles. To find this optimal alignment, we calculated the pairwise Euclidean 

distance at relative depth offsets ranging from -1 mm to +1 mm. The offset with minimal 

pairwise Euclidean distance was labeled optimal. To determine the best depth offset for a given 

channel, we estimated the optimal offset with respect to each of the other 31 channels, and then 

calculated the mean of these values.  Then we shifted the variance depth profile for each 

channel by half of its optimal mean offset. This shift operation was performed in batch mode, 

with all electrodes shifted simultaneously once all mean offsets had been calculated.  This entire 

procedure was repeated iteratively until no further shifts were required. Results were inspected 

by calculating the array-averaged LFP variance depth profile and looking for an inflection point 

characteristic of a change in activity at a specific depth.  We labeled this inflection point zero 

cortical depth in both animals, and confirmed its correspondence to the top of cortex by plotting 

the depths of all observed spiking units across the array. In both animals, the inflection point 

occurred within ±200 µm of the depth of the first observed spikes on all channels. Following 

depth registration, we observed a small number of electrode depth profiles in Monkey S with 

spiking activity that spanned >2.5 mm in depth, which exceeds the largest cortical thickness 

observed in areas 8 and 46 (9). Due to the 3D geometry of cortex, these electrodes likely 

entered cortex at angles slightly different from 90 degrees to the surface, leading to slightly 

“stretched” spike depth profiles. We corrected this problem by manually rescaling registered 

depths by 0.8 - 1.0 on affected electrodes to bring the span of spiking activity closer to 2.5 mm. 

 

Sulcal Electrode Identification 

We identified putative sulcal electrodes as those that required electrode movement by at least 3 

mm below the dura before extracellular action potentials were recorded. This step identified ~10 
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sulcal candidate electrodes in each animal. We confirmed or rejected these candidates by 

tracing a three-dimensional region-of-interest (ROI) in each animal’s MRI, using the chamber 

registration to map electrode trajectories through the ROI, and identifying electrodes that 

projected down sulcal banks. To compensate for the +/- 1 mm positional error and +/- 20 degree 

rotational error of the chamber registration, we repeated this procedure using all possible 

registrations within this range of offsets, in 0.1 mm and 1 degree increments.  We rejected 

candidate registrations for which the predicted depth of first spike contact disagreed with the 

observed depth of spike contact by more than 2 mm on any electrode. Finally, we identified the 

candidate registration with the greatest overlap between the ROI and observed spike locations. 

This optimal registration for each animal was then used to confirm or reject putative sulcal 

electrodes. In Monkey A, 4 channels were rejected as sulcal to give a total of 28 electrodes for 

further analysis. In Monkey S, 2 channels were rejected as sulcal and an additional two 

channels were rejected due to lack of any observed neural signals to give a total of 28 

electrodes for further analysis. All results presented in this study hold regardless of whether 

putative sulcal electrodes were included or excluded from analysis. 

 

Dimensionality Reduction Analyses 

To study the low-dimensional dynamics of population activity, first we used principal component 

analysis (PCA) to identify eigenmodes of population activity that compactly describe the 

responses of all 746 isolated neurons across all eight targets during both tasks. We generated a 

time-dependent firing rate vector for each neuron during each trial by counting spikes in 

sequential 50 ms bins and smoothing data with a 20 ms Gaussian kernel. Each firing rate trace 

was a concatenation of three data alignments: -300 to +1,000 ms around Cue onset, -500 to 0 

ms around the Go command, and -200 to +500 around Saccade onset. Next, we calculated 

each neuron’s trial-averaged response to repetitions of each target during each task and then 
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normalized with respect to the mean and variance of the firing rate during a 300 ms baseline 

interval before Cue onset. Then, for each neuron and target, we appended visual task data to 

memory task data, resulting in 746 x 8 distinct firing rate traces. Finally, we diagonalized the 

covariance matrix of these data to discover the eigenvalues (principal components) and 

associated eigenmodes that best explain both the common and independent sources of 

variance in the data (10). In the context of multivariate data, this analysis produces a new 

coordinate system in which the first coordinate accounts for as much variance in the data as 

possible, the second coordinate for as much of the remaining variance as possible, etc. 

 

To exclude independent sources of variability in the data and discover only the common-mode 

components of population activity that are driven by task variables, we used a technique that 

combines linear regression with “targeted dimensionality reduction”  (TDR) to investigate 

population dynamics during WM (6). We briefly describe our application of this technique here, 

and provide the complete mathematical details of this method in a subsequent section titled 

“Mathematical Appendix: Targeted Dimensionality Reduction.” To prepare data for this analysis, 

first, we generated a time-dependent firing rate vector for each neuron during each trial by 

counting spikes in sequential 50 ms bins and smoothing data with a 40 ms Gaussian kernel. All 

firing rates were then normalized with respect to the mean and variance of the firing rates 

across all units, times and trials. After firing rate estimation, we enforced two constraints to 

guarantee that all trials in our analysis had the same duration: first, where necessary, delay 

activity was compressed in time (by rescaling data in the time domain) to span 1 s, and activity 

between the time of the Go command and saccade onset was compressed or dilated in time to 

span 200 ms. Then we regressed each neuron's firing rate over the two task variables that were 

manipulated in our experiments: target location and memory/visual delay context. Although 

eight targets were presented during experiments, for simplicity, we only plot responses to two 

specific targets in this analysis: the leftmost contralateral target, and the rightmost ipsilateral 
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target. Similar results are achieved by plotting responses to nearest neighbor targets of the 

most contralateral and ipsilateral locations. Therefore, our findings are not specific to one pair of 

locations only. 

 

As detailed in the Mathematical Appendix, we then used PCA to discover a low-

dimensional subspace that explains most of the variance in activity by all 746 isolated neurons 

across all times and task conditions. We focused our subsequent analysis on the subspace 

spanned by the first N=8 principal components (Fig. S4A). Next, we assembled the previously 

calculated regression coefficients for all neurons into a population matrix and "de-noised" the 

coefficients by projecting into the PCA subspace. (This procedure was applied to population 

activity at each time point, leading to a different set of de-noised coefficients at each time point. 

The set with largest L2 norm was selected as the "best" set of coefficients for each variable.) 

Finally, we orthogonalized the “best” de-noised regression vectors. Population activity was then 

projected onto each of the two vectors during each task condition to map activity into a state 

space that maximally captures variability due to the associated task variable (Fig. S4B,C). We 

used cross-validation to confirm that neural trajectories in state space do not change when 

regression-vectors are estimated from and projected onto random, non-overlapping 50% 

subsets of trial data (Fig. S4D). 

 

Spike Waveform Classification 

Previous work has shown that certain fast-spiking (FS) inhibitory neurons in primate PFC are 

distinguishable from regular-spiking (RS) excitatory cells by their baseline firing rate, spike 

waveform shape, and task-responsiveness (11, 12). Due to these functional differences, we 

classified the units in our spike database as FS or RS using a conjunction of criteria. First, for 

each unit, we calculated the mean spike waveform across all samples, and then estimated two 
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features: the peak-to-peak time (P2P), defined as the time in milliseconds between the two 

maximal values on either side of the action potential trough; and the trough-to-peak time (T2P), 

defined as the time in milliseconds between the action potential trough and subsequent voltage 

peak. We also estimated the firing rate of each unit during the 500 ms Baseline interval before 

Cue onset, averaged across all ODR trials. All units were initially classified as RS. Then, we 

classified each unit as FS if P2P < 0.54 ms and the baseline firing rate exceeded 8.7 

spikes/second, the sample mean across all recorded units (11), or if T2P < 0.25 ms (13–15). 

Applying this set of quantitative criteria labeled 99 units as FS (13.3% of total) and 647 units as 

RS (86.7% of total) in our combined database across both monkeys. The population of FS units 

is qualitatively distinguishable from RS units as a mostly distinct band in T2P vs P2P feature 

space, which corresponds to clear differences in the mean spike waveforms across these 

populations (Fig. S3). 

 

Tuning Z-Score Calculation 

We quantified the significance of each unit’s spatial tuning using a tuning z-score (16).  First, we 

estimated the mean firing rate, 𝑓!, of each unit across all presentations of each Cue location, 

(indexed by i). Next, we assigned an angular displacement, 𝜑!, to each Cue location and then 

calculated the first trigonometric moment, 𝑅!, of each unit’s response across all eight angles, as 

follows: 

𝐶 =    (𝑓! ∙ cos𝜑!) (1) 

𝑆 =    (𝑓! ∙ sin𝜑!) (2) 

𝑅! =    [  (𝐶/ 𝑓!)!  ] +    [  (𝑆/ 𝑓!)!  ] 
(3) 

 

To establish a null distribution, we shuffled target labels across trials and repeated this moment 
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estimation procedure 10,000 times. The p-value, or fraction of shuffled moment values that 

exceeded the true moment of the data, was then passed to a normal inverse cumulative 

distribution function (norminv in Matlab) to obtain the tuning z-score. Therefore, the tuning z-

score is calculated with respect to shuffled data at the same moment in time as the test data. 

Firing rates were estimated from 300 ms windows during the delay epoch of each task, 

immediately before the Go command. A unit was labeled as tuned if its tuning z-score exceeded 

1.65 (one-tailed t-test) for trials of either the vODR or mODR task. A unit was labeled with 

inverted tuning if its preferred stimulus response during the delay was less than the firing rate 

during the baseline (17). Across both monkeys, we identified 365 RS units with positive tuning, 

92 RS units with inverted tuning, 59 FS units with positive tuning, and 19 FS units with inverted 

tuning. This method was adapted to calculate LFP spatial tuning at each frequency during the 

last 300 ms of the memory delay (Fig. S6A) by substituting the trial-averaged power spectrum 

for firing rates. 

 

Task Selectivity Analysis 

Among the 365 RS neurons with positive spatial tuning during the delay, we quantified the task 

selectivity of each unit’s preferred target response using a permutation test.  First, we estimated 

the trial-averaged firing rate of each neuron in response to its preferred target during the last 

300 ms of the delay interval of both tasks. Then, we compared the true difference in firing rates 

across tasks (mODR rate – vODR rate) to a resampled difference estimate obtained by merging 

trials from both tasks, randomly resampling mODR and vODR trials from the merged distribution 

10,000 times, and recalculating the difference in mean rates for the resampled trials during each 

iteration. The p-value, or fraction of resampled rate differences that exceeded the true rate 

difference, was then passed to a normal inverse cumulative distribution function (norminv in 

Matlab) to obtain the task selectivity z-score. Units with a selectivity z-score < -1.65 (1-tailed t-
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test) were classified as “early storage” neurons, and units with a z-score > +1.65 (1-tailed t-test) 

were classified as “late storage” neurons. All non-selective units with z-scores between (-1.65, 

+1.65) were labeled as putative response neurons. This method was adapted to calculate LFP 

task selectivity at each frequency during the last 300 ms of the delay (Fig. S6B) by substituting 

the trial-averaged power spectrum for firing rates. 

 

Reaction Time Analysis 

We grouped mODR trials from each monkey into two categories containing the fastest 50% and 

slowest 50% of RTs after the Go command, respectively. Then, for each unit in the early 

storage, late storage and response populations, we selected preferred target trials from each 

RT category and estimated firing rates during the last 500 ms of the delay. In 49% of cases, 

fewer than 10 trials were available for firing rate estimation in at least one RT condition. 

Subsequent decimation analysis revealed a strong sample dependence of trial-averaged firing 

rate estimates in most of these cases, indicating that splitting trials into multiple RT categories 

tends to result in undersampled mean firing rate estimates for single neurons. Therefore, we did 

not perform a two-way ANOVA of unit class (early storage, late storage, response) and RT (fast 

or slow) on firing rate for individual neurons. Instead, we pooled all trials from each RT category 

across each unit class and then used permutation testing with 10,000 iterations to identify 

significant differences in firing rate across RT categories on a population basis. This method 

treats every trial’s firing rate estimate as a representative sample from a single population, 

rather than from a single neuron. In this manner, any observed difference in firing rate across 

RT conditions can be interpreted to reflect a property of the population. 
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Error Trial Analysis 

We distinguish error trials (when the monkey received the Go command and then saccaded to a 

location outside the ±2o target bounding box) from aborted trials (when the monkey saccaded 

prior to receiving the Go command, or received the Go command but failed to saccade, or 

saccaded to the correct location after Go but broke fixation prematurely). The fraction of error 

trials was 2.6% during the mODR task (373 error, 13,894 correct), and memory saccade error 

endpoints were separated from the instructed target by a median angle of 15.4o, suggesting a 

critical failure of WM before these rare mistakes. Individually, Monkey A showed a 1.4% error 

rate and Monkey S showed a 4.0% error rate during the mODR task. Monkey A’s RTs during 

error trials (193 ± 24.8 ms s.e.m.) were significantly faster than RTs during correct trials (211 ± 

0.6 ms s.e.m) (p<0.01, permutation test). By contrast, Monkey S’s RTs during error trials (279 ± 

7.8 ms s.e.m.) were significantly slower than RTs during correct trials (189 ± 0.3 ms s.e.m.) 

(p<0.001, permutation test).  

 

Spike-Field Coherence Analysis 

We estimated spike-field coherence (SFC) as a function of frequency and time using multitaper 

spectral estimation (8, 18) with 4 Hz smoothing (for frequencies from 4-13 Hz) or 10 Hz 

smoothing (for frequencies from 14 to 100 Hz), and an estimation window spanning the last 

1000 ms of the delay period. To study SFC between the late storage network and fields on other 

electrodes, first we selected all pairs that included a late storage unit on one electrode and any 

class of delay-tuned unit with the same preferred target on a different electrode, which was 

labeled the field electrode. This selection criterion was designed to increase the likelihood that 

field potentials would reflect processing of the late storage unit’s preferred target at other PFC 

recording sites. In contrast to our single unit data, we did not assign class labels to LFPs 

because these signals tended to exhibit memory delay-selectivity in PFC regardless of which 
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class of unit was recorded nearby (Fig. S6B). Next, we identified trials when the preferred target 

of the late storage unit was presented, and then estimated the coherence magnitude after 

pooling all late storage unit spike data and all field data from the field electrodes across these 

trials. To estimate the standard error of our estimator, we repeated the coherence estimate 

10,000 times after randomly resampling data with replacement. To establish a null distribution, 

we shuffled trial labels within each unit pair and repeated the coherence estimation procedure 

10,000 times. Raw coherence values were converted to z-scores by subtracting the mean and 

then dividing by the standard deviation of the null distribution. This procedure was repeated for 

the early storage, late storage and response populations. We identified significant differences in 

coherence across reaction time conditions using a permutation test with 10,000 iterations, and 

rejected spuriously significant frequency bands (cluster correction) by comparing the length of 

each contiguous range of significantly coherent frequencies with a null distribution that was 

obtained from shuffled data (19). If the length of a significant band in unshuffled data failed to 

exceed 95% of the significant band lengths in shuffled data, it was deemed not significant. 

 

Noise Correlation Analysis 

 “Noise correlation,” or spike count correlation, between two neurons describes any correlated 

variability in firing rates across repeated presentations of the same stimulus that remains after 

subtracting out each neuron’s mean response to the stimulus, i.e. after controlling for signal 

correlation. We quantified noise correlations between unit pairs that were drawn from the same 

response class (early storage, late storage or response) and satisfied a relative tuning 

constraint (such as a 45 degree maximum difference in preferred target angle). To estimate 

noise correlation for each pair of neurons during the mODR task, we counted spikes by each 

neuron during the last 300 ms of the memory delay on each trial, converted these responses to 

target-specific z-scores by subtracting the mean response across repeated target presentations 
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and dividing by the standard deviation, and finally estimated Pearson’s correlation coefficient 

between the firing rate vectors across all trials, spanning all targets (7). This process was 

repeated for vODR trials to estimate noise correlation during the visual delay. We confirmed that 

the correlation estimates reported here were independent of firing rate by quantifying the 

relationship between geometric mean firing rate and the variance of noise correlation estimates 

(R2<0.05 for all mODR and vODR task comparisons). 

	  

Relationship of Labeled Units to Classical Visual, Visuomovement and Movement Units 

For the interested reader, Table 1 below summarizes how the three classes of persistently 

active units identified in our study relate to the classical heuristic labeling of PFC neurons as 

“visual,” “visuomovement” or “movement” (20). We assigned classical labels by applying the 

criteria specified in (21): To classify neurons as visual, visuomovement and movement, we 

measured spike counts within specified windows. Visual responses were measured between 50 

and 150 ms after Cue onset. Baseline activity was measured between 150 ms and 0 ms before 

Cue onset. Movement responses were measured between 100 ms before and 20 ms after the 

initiation of the saccade. Premovement activity was measured between 350 ms and 200 ms 

before the initiation of the saccade. A neuron was classified as visual if the visual response was 

significantly greater than baseline activity (p < 0.05, permutation test) in at least one target 

location and the movement response was not significantly greater than the premovement 

activity at any target location. Accordingly, a neuron was classified as movement related if the 

movement response was significantly greater than the premovement activity (p < 0.05) for 

saccades to at least one target location. Visuomovement neurons displayed significant visual 

and movement responses. 
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Table 1. Summary of our unit labels in relation to classical PFC labels. 

    Unit totals are presented by waveform class, i.e. NRS (NFS) 

	   Early	  Storage	   Late	  Storage	   Response	   Other	   Total	  

Visual	   23	  (3)	   22	  (3)	  	   56	  (10)	   73	  (10)	   174	  (26)	  

Visuomovement	   28	  (8)	   39	  (7)	   69	  (14)	   67	  (21)	   203	  (50)	  

Movement	   5	  (1)	   18	  (4)	   35	  (1)	   53	  (2)	   111	  (8)	  

Other	   3	  (1)	   14	  (2)	   40	  (3)	   102	  (9)	   159	  (15)	  

Total	   59	  (13)	   93	  (16)	   200	  (28)	   295	  (42)	   647	  (99)	  
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Mathematical	  Appendix:	  Targeted	  Dimensionality	  Reduction	  	  
 

To investigate the distributed dynamics of WM, we projected the population activity of all 746 

isolated neurons onto a two-dimensional state space that maximally captures variability due to 

two task variables: target location (Target space) and memory/visual delay type (Context 

space). This analysis was supported by a technique that combines linear regression with 

targeted dimensionality reduction (6), the details of which are reproduced below. Modifications 

to this procedure that are specific to our task design are indicated, where appropriate. 

 

1. Linear Regression 

 

We used multi-variable, linear regression to determine how the two task variables (target 

location and memory/visual delay context) affect the responses of each recorded unit. We first 

z-scored the responses of a given unit by subtracting the mean response from the firing rate at 

each time and in each trial, and by dividing the result by the standard deviation of the 

responses. Both the mean and the standard deviation were computed by combining the unit’s 

responses across all trials and times. We then describe the z-scored responses of unit i at time t 

as a linear combination of two task variables: 

 

𝑟!,! 𝑡 =   𝛽!,!
! ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 𝑘 +   𝛽!,!

! ∙ 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑘 +   𝛽!,!
! . (1) 

 

where ri,k(t) is the z-scored response of unit i at time t and on trial k, Target(k) is the presented 

target on trial k (+1 for a contralateral target, -1 for an ipsilateral target), and Context(k) is the 

delay type on trial k (+1 for memory, -1 for visual). Although eight targets were presented during 

experiments, for simplicity, we only included trials of two specific targets in this analysis (the 
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leftmost contralateral target, and the rightmost ipsilateral target). Similar results are achieved by 

plotting responses to nearest neighbor targets of the most contralateral and ipsilateral locations. 

Therefore, our findings are not specific to one pair of locations only. 

 

 

The regression coefficients 𝜷!,!
(!) for v = 1 to 3, describe how much the trial-by-trial firing rate of 

unit i, at a given time t during the trial, depends on the corresponding task variable v. Here, and 

below, v indexes the two task variables, i.e. Target (v = 1) and Context (v = 2). The last 

regression coefficient (v = 3) captures variance that is independent of the two task variables, 

and instead results from differences in the responses across time. 

 

To estimate the regression coefficients 𝛽!,!
(!) we first define, for each unit i, a matrix Fi of size 

Ncoef x Ntrial, where Ncoef is the number of regression coefficients to be estimated (i.e. 3), and Ntrial 

is the number of trials recorded for unit i. The first two rows of Fi each contain the trial-by-trial 

values of one of the four task variables. The last row consists only of ones, and is needed to 

estimate 𝛽!,!
(!). The regression coefficients can then be estimated as: 

 

𝜷!,! = 𝑭!𝑭!𝑻
!𝟏
𝑭!   𝒓!,! (2) 

 

where 𝜷!,! is a vector of length Ncoef with elements 𝛽!,!
(!), v=1-3. Here and below we denote 

vectors and matrices with bold letters, and use the same letter (not bold) to refer to the 

corresponding entries of the vector or matrix, which in this case are indexed by v. 

 

2. Population average responses 
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We constructed population responses by combining the condition-averaged responses of  units 

that were mostly recorded separately, rather than simultaneously. We defined conditions based 

on the target location (contralateral or ipsilateral) and delay context (memory or visual). For 

each unit, trials were first sorted by condition, and then averaged within conditions. We then 

smoothed the responses in time with a Guassian kernel (σ = 40 ms). Finally, we z-scored the 

average, smoothed responses of a given unit by subtracting the mean response across times 

an conditions, and by dividing the result by the corresponding standard deviation. We define the 

population response for a given condition c and time t as a vector xc,t of length Nunit built by 

pooling the responses across all units for that condition and time. Therefore, the dimension of 

the state space corresponds to the number of units in the population. 

 

3. Targeted dimensionality reduction 

 

To understand the dynamics of PFC activity during WM, it is critical to identify the components 

of the population responses that are most tightly linked to the monkeys’ behavior. Our ultimate 

goal is to define a small set of axes, within the state space of dimension Nunit defined by the 

activity of each unit, which independently account for response variance due to key task 

variables. The projection of the population responses onto these axes yields de-mixed 

estimates of the task-variables, which are mixed at the level of single neurons.  

 

To define the axes of the subspace, we applied the “Targeted dimensionality reduction” 

approach developed by (6), consisting of three steps described in detail below. We start by 

using principal component analysis (PCA) to de-noise the population responses and focus our 

analyses on the subspace spanned by the first Npca = 8 principal components (PCs). We then 

identify directions in this reduced subspace (the de-noised regression vectors defined below) 
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that together account for response variance due to 2 task variables (target and context). Finally, 

we orthogonalize the two identified directions to define axes that account for separate 

components of the variance due to the task variables. 

 

4. Principal component analysis 

 

We used PCA to identify the dimensions in state space that captured the most variance in the 

condition-averaged population responses. We first build a data matrix X of size Nunit x (Ncondition  ∙

  T), whose columns correspond to the smoothed, z-scored population response vectors xc,t 

defined above for a given condition c and time t (section 1). Ncondition corresponds to the total 

number of conditions, and 𝑇 to the number of time samples. The PCs of this data matrix are 

vectors va of length Nunit, indexed by 𝑎 from the PC explaining the most variance to the one 

explaining the least. We use the first Npca PCs to define a de-noising matrix 𝑫 of size Nunit x Nunit: 

 

𝑫 =    𝒗!𝒗!!
!!"#
!!!  . (3) 

 

The de-noised population response for a given condition and time is defined by: 

 

𝑿!"# = 𝑫  𝑿 , (3) 

 

with 𝑿!"# also of dimension of size Nunit x (Ncondition  ∙  T). The overall contribution of the ath PC to 

the population response at each time point t can be quantified by first projecting the population 

response onto that PC, and then computing the variance across all conditions of the projection, 

var(𝒗!!𝑿) (Fig. S4A).  
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5. Regression subspace 

 

We use the regression coefficients described in Equation 1 above to identify dimensions in state 

space containing task related variance. For each task variable 𝑣  = 1-2 we first build a set of 

coefficient vectors 𝜷!,! whose entries 𝜷!,!(𝑖) correspond to the regression coefficient for task 

variable 𝑣, time 𝑡, and unit 𝑖. The vectors 𝜷!,! (of length Nunit) are obtained by simply rearranging 

the entries of the vectors 𝜷!,! (of length Ncoef) computed above (section 1). This re-arrangement 

corresponds to the fundamental conceptual step of viewing the regression coefficients not as 

properties of individual units, but as the directions in state space along which the underlying 

task variables are represented at the level of the population. Each vector, 𝜷!,!, thus corresponds 

to a direction in state space that accounts for variance in the population response at time 𝑡, due 

to variation in task variable 𝑣. 

 

We de-�noise each vector by projecting it into the subspace spanned by the first Npca = 8 

principal components:  

 

𝜷!,!
!"# = 𝑫  𝜷𝒗,𝒕 , (4) 

 

with the set of vectors 𝜷!,!
!"# also of length Nunit. We refer to these vectors as the ‘de-noised’ 

regression coefficients. This de-noising corresponds to removing from each vector 𝜷𝒗,𝒕 the 

component lying outside the subspace spanned by the first Npca = 8 PCs.  

 

For each task variable v, we then determine the time, 𝑡!!"#, for which the corresponding set of 

vectors 𝜷!,!
!"# has maximum norm, and then define time-independent, de-noised ‘regression 
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vectors’: 

 

𝜷!!"# = 𝜷𝒗,𝒕𝒗𝒎𝒂𝒙
𝒑𝒄𝒂   with 

𝑡!!"# = argmax! 𝜷𝒗,𝒕
𝒑𝒄𝒂  , 

(4) 

(5) 

 

where each 𝜷!!"# is of dimension Nunit. Finally, we obtain the orthogonal axes of Target and 

Context (e.g. Fig. S4B) by orthogonalizing the regression vectors 𝜷!!"#with the QR-

decomposition: 

 

𝑩!"# = 𝑸  𝑹  , (6) 

 

where 𝑩!"# = [ 𝜷!!"# 𝜷!!"# ] is a matrix whose columns correspond to the regression vectors, Q 

is an orthogonal matrix, and R is an upper triangular matrix. The first two columns of Q 

correspond to the orthogonalized regression vectors Bv_orth, which we refer to as the ‘task-

related axes’ of target and context. These axes span the same ‘regression subspace’ as the 

original regression vectors, but crucially each explains distinct portions of the variance in the 

responses. 

 

To study the representation of the task-related variables in PFC, we projected the average 

population responses onto these orthogonal axes (Fig. S4): 

 

𝑝!,! = 𝜷𝒗!
𝑻𝑿𝒄  , (7) 

 

where 𝑝!,! is the set of time-series vectors over all task variables and conditions, each with 

length T. Furthermore, we have reorganized the data matrix, X, so that separate conditions are 



Multiple working memory component networks – Supplemental Materials 

Markowitz,	  Curtis,	  and	  Pesaran	   Page	  25	  of	  30	   	  Pesaran,	  corresponding	  author.	  
	  

in separate matrices, resulting in a set, 𝑋!, of Ncondition matrices of size Nunit x T. 
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Supplemental	  Figure	  Legends	  
 

Figure S1. Tuning Curve Examples. Dots in each panel show the mean late delay response by 

a single unit following repeated presentation of 8 different targets during the mODR (red) and 

vODR (blue) tasks. Solid lines show the best fitting von Mises distribution for each task. (A) 

Early storage unit responses during the late delay interval (spanning the last 300 ms before the 

Go command). (B) Late storage unit responses during the late delay interval. (C) Response unit 

responses during the late delay interval. 

 

Figure S2. Principal Component Analysis. (A) Eigenmodes corresponding to the largest five 

eigenvectors of the population firing rate data. Traces are color-coded by the mODR (red) and 

vODR (blue) components of each mode. Modes 3 and 5 exhibit pronounced task-selectivity. (B) 

Scatterplot of all neural responses that were used as source data for PCA after projection onto 

the 3rd and 5th eigenmodes. The lack of obvious clustering indicates that memory- and visually-

selective responses do not cluster in PC-space. 

 

Figure S3. Classification of FS and RS Units. (A) Scatterplot of Baseline Firing Rate and Peak-

to-Peak Time (P2P) for n=746 units recorded across two monkeys. Vertical and horizontal lines 

define two thresholds (P2P < 0.54 ms and Baseline Rate > 8.7 sp/sec) that were used to 

classify units as FS (red) or RS (black). Shaded region defines units that were assigned to the 

FS category by these two criteria. (B) Scatterplot of Baseline Firing Rate and Trough-to-Peak 

Time (T2P) for the same units from (A). Vertical line defines an additional threshold (T2P < 0.25 

ms) that was used to classify units as FS or RS. Shaded region defines units that were assigned 

to the FS category by this criterion. (C) Scatterplot of T2P and P2P spike features for the same 

units from (A), color-coded by FS or RS cluster assignment. (D) Mean spike waveforms across 
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all RS (black, n = 647) and FS (red, n = 99) units identified by this analysis. 

 

Figure S4. Distinct Early and Late Storage Modes are Revealed By Targeted Dimensionality 

Reduction. (A) Percent of total variance explained by the first 20 eigenvectors calculated from 

the activity of all 746 units recorded across two monkeys. We de-noised population data by 

projecting all samples into the space of the 8 eigenvectors with largest eigenvalues. (B) 

Trajectories of all 746 isolated neurons in a two-dimensional state space that captures variability 

due to memory/visual delay type (Context space) and target location (Target space). All panels 

show contralateral target responses during mODR (red) and vODR (blue) trials. (i) Delay activity 

in the Target space reveals an early storage mode. (ii) Delay activity in the Context space 

reveals a late storage mode. (C) Neural trajectories in the Target and Context spaces following 

presentation of contralateral (solid) and ipsilateral (dotted) targets during mODR (red) and 

vODR (blue) trials. (D) Cross-validation of de-noised regression vectors estimated from two 

non-overlapping 50% subsets of trial data. These regression vectors map population activity 

onto nearly identical neural trajectories in state space. 

 

Figure S5. Coding of Saccade Accuracy. (A) (Left) Angular error (Φ) and eccentricity error (ε) 

were quantified during mODR saccade error trials by measuring the indicated displacements of 

the saccade endpoint from the instructed Cue. (Right) Scatterplot of displacements during 373 

mODR error trials. (B-D) Mean firing rate response of each population to preferred stimuli during 

mODR trials with correct (red) and error (black) saccades after the Go command. (B) Early 

storage population. (C) Late storage population. (D) Response population. In all panels, 

horizontal bars denote a permutation test over the difference in firing rates across conditions 

during the last 500 ms before the Go command. “N.S” denotes p>0.05, and an asterisk denotes 

p<0.05 (permutation test). All statistical findings hold after decimating trials, confirming they are 

not attributable to biased sampling or low statistical power. 
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Figure S6. Summary of LFP Properties. Data show electrodes on which units from only one 

task selectivity class were recorded.  (A) Fraction of LFP sites with positive (black) or inverted 

(red) spatial tuning by frequency for (i) early storage, (ii) late storage or (iii) response unit 

electrodes. (B) Fraction of LFP sites with memory (red) or visual (blue) task-selectivity by 

frequency for preferred target trials on (i) early storage, (ii) late storage or (iii) response unit 

electrodes. (C-E) Spike-field coherence magnitude versus time for units in each network and 

fields recorded on a different electrode, at the site of any other delay-tuned unit with the same 

preferred target location. Coherence estimates were obtained from a 1 s sliding window using 

10 Hz bandwidth at frequencies above 13 Hz and 4 Hz bandwidth at lower frequencies. The 

arrow in each panel indicates the time point shown in Figure 4 using the same analysis 

parameters. (C) Early storage population SFC during trials with (i) the fastest 50% and (ii) the 

slowest 50% of reaction times after the Go command. (D) Late storage population SFC during 

(i) fast RT and (ii) slow RT trials. (E) Response population SFC during (i) fast RT and (ii) slow 

RT trials. 
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Figure S2
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Figure S3
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Figure S4
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Figure S5
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Figure S6
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