Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Isolation of glutamate transport-coupled charge flux and estimation of glutamate uptake at the climbing fiber–Purkinje cell synapse

Gabor Brasnjo and Thomas S. Otis
PNAS April 20, 2004 101 (16) 6273-6278; https://doi.org/10.1073/pnas.0308149101
Gabor Brasnjo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas S. Otis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Roger A. Nicoll, University of California, San Francisco, CA (received for review December 8, 2003)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Excitatory amino acid transporters (EAATs) located on neurons and glia are responsible for limiting extracellular glutamate concentrations, but specific contributions made by neuronal and glial EAATs have not been determined. At climbing fiber to Purkinje cell (PC) synapses in cerebellum, a fraction of released glutamate is rapidly bound and inactivated by neuronal EAATs located on postsynaptic PCs. Because transport involves a stoichiometric movement of ions and is electrogenic, postsynaptic currents mediated by EAATs should permit precise calculation of the amount of postsynaptic glutamate uptake. However, this is possible only if a stoichiometric EAAT current can be isolated from all other contaminating signals. We used synaptic stimulation and photolysis of caged glutamate to characterize the current in PCs that is resistant to high concentrations of glutamate receptor antagonists. Some of this response is inhibited by the high-affinity EAAT antagonist TBOA (dl-threo-β-benzyloxyaspartic acid), whereas the remaining current shows properties inconsistent with glutamate transport. By subtracting this residual non-EAAT current from the response recorded in glutamate receptor antagonists, we have obtained an estimate of postsynaptic uptake near physiological temperature. Analysis of such synaptic EAAT currents suggests that, on average, postsynaptic EAATs take up ≈1,300,000 glutamate molecules in response to a single climbing fiber action potential.

Footnotes

  • ↵ * To whom correspondence should be addressed. E-mail: otist{at}ucla.edu.

  • This paper was submitted directly (Track II) to the PNAS office.

  • Abbreviations: EAAT, excitatory amino acid transporter; GluR, glutamate receptor; CF, climbing fiber; PC, Purkinje cell; NBQX, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide; GYKI 52466, 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride; LY 367385, S-+-α-amino-4-carboxy-2-methylbenzeneacetic acid; CPP, RS-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid; TBOA, dl-threo-β-benzyloxyaspartic acid; EPSC, excitatory postsynaptic current; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; mGluR, metabotropic GluR; CPPG, RS-α-cyclopropyl-4-phosphophenylglycine.

  • Copyright © 2004, The National Academy of Sciences
View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Isolation of glutamate transport-coupled charge flux and estimation of glutamate uptake at the climbing fiber–Purkinje cell synapse
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Isolation of glutamate transport-coupled charge flux and estimation of glutamate uptake at the climbing fiber–Purkinje cell synapse
Gabor Brasnjo, Thomas S. Otis
Proceedings of the National Academy of Sciences Apr 2004, 101 (16) 6273-6278; DOI: 10.1073/pnas.0308149101

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Isolation of glutamate transport-coupled charge flux and estimation of glutamate uptake at the climbing fiber–Purkinje cell synapse
Gabor Brasnjo, Thomas S. Otis
Proceedings of the National Academy of Sciences Apr 2004, 101 (16) 6273-6278; DOI: 10.1073/pnas.0308149101
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences of the United States of America: 101 (16)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490