Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Forecast and control of epidemics in a globalized world

L. Hufnagel, D. Brockmann, and T. Geisel
  1. Max-Planck-Institut für Strömungsforschung, Bunsenstrasse 10, 37073 Göttingen, Germany; and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106

See allHide authors and affiliations

PNAS October 19, 2004 101 (42) 15124-15129; https://doi.org/10.1073/pnas.0308344101
L. Hufnagel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Brockmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Geisel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Robert May, University of Oxford, Oxford, United Kingdom, and approved August 26, 2004 (received for review December 15, 2003)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

The rapid worldwide spread of severe acute respiratory syndrome demonstrated the potential threat an infectious disease poses in a closely interconnected and interdependent world. Here we introduce a probabilistic model that describes the worldwide spread of infectious diseases and demonstrate that a forecast of the geographical spread of epidemics is indeed possible. This model combines a stochastic local infection dynamics among individuals with stochastic transport in a worldwide network, taking into account national and international civil aviation traffic. Our simulations of the severe acute respiratory syndrome outbreak are in surprisingly good agreement with published case reports. We show that the high degree of predictability is caused by the strong heterogeneity of the network. Our model can be used to predict the worldwide spread of future infectious diseases and to identify endangered regions in advance. The performance of different control strategies is analyzed, and our simulations show that a quick and focused reaction is essential to inhibiting the global spread of epidemics.

Footnotes

  • ↵ † To whom correspondence should be addressed. E-mail: lars{at}chaos.gwdg.de.

  • This paper was submitted directly (Track II) to the PNAS office.

  • Abbreviations: SARS, severe acute respiratory syndrome; SIR, systemic inflammatory response; WHO, World Health Organization.

  • ↵ ‡ Data on flight schedules and airport information are available from OAG Worldwide Limited, London (www.oag.com), and the International Air Transport Association, Geneva (www.iata.org).

  • ↵ § Data on the SARS outbreak are available from the WHO, Geneva (www.who.int/csr/sars/en), and the Center for Disease Control and Prevention, Atlanta (www.cdc.gov/ncidod/sars).

  • Copyright © 2004, The National Academy of Sciences
View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Forecast and control of epidemics in a globalized world
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Forecast and control of epidemics in a globalized world
L. Hufnagel, D. Brockmann, T. Geisel
Proceedings of the National Academy of Sciences Oct 2004, 101 (42) 15124-15129; DOI: 10.1073/pnas.0308344101

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Forecast and control of epidemics in a globalized world
L. Hufnagel, D. Brockmann, T. Geisel
Proceedings of the National Academy of Sciences Oct 2004, 101 (42) 15124-15129; DOI: 10.1073/pnas.0308344101
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences of the United States of America: 101 (42)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Local Infection Dynamics
    • Dispersal on the Aviation Network
    • Results of Simulations
    • The Impact of Fluctuations
    • Control Strategies
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Click beetle on a leaf
How click beetles jump
Marianne Alleyna, Aimy Wissa, and Ophelia Bolmin explain how the click beetle amplifies power to pull off its signature jump.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490