Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion

Mitch McVey, Jeannine R. LaRocque, Melissa D. Adams, and Jeff J. Sekelsky
PNAS November 2, 2004 101 (44) 15694-15699; https://doi.org/10.1073/pnas.0406157101
Mitch McVey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeannine R. LaRocque
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Melissa D. Adams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeff J. Sekelsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Thomas D. Petes, University of North Carolina, Chapel Hill, NC (received for review August 20, 2004)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Bloom syndrome is a rare disorder associated with cancer predisposition and genomic instability and is caused by loss of the RecQ helicase BLM. The Drosophila ortholog of BLM (DmBlm) is required for accurate repair of DNA double-strand gaps by homologous recombination. Repair products from DmBlm mutants have shorter repair synthesis tract lengths compared to wild type and are frequently associated with deletions flanking the break site. To determine the mechanisms responsible for deletion formation in the absence of DmBlm, we characterized repair after excision of the P{w a} element in various genetic backgrounds. Flies lacking DmRad51 do not have an elevated deletion frequency. Moreover, loss of DmRad51 suppresses deletion formation in DmBlm mutants. These data support a model in which DmBlm acts downstream of strand invasion to unwind a D-loop intermediate to free the newly synthesized strand. In the absence of DmBlm, alternative pathways of D-loop disassembly result in short repair synthesis tracts or flanking deletions. This model explains how RecQ helicases can promote homologous recombination while preventing illegitimate recombination.

Footnotes

  • ↵ ¶ To whom correspondence should be addressed. E-mail: sekelsky{at}unc.edu.

  • ↵ ‡ M.M. and J.R.L. contributed equally to this work.

  • Author contributions: M.M., J.R.L., M.D.A., and J.J.S. designed research; M.M., J.R.L., and M.D.A. performed research; M.M., J.R.L., M.D.A. and J.J.S. analyzed data; and M.M., J.R.L., and J.J.S. wrote the paper.

  • This paper was submitted directly (Track II) to the PNAS office.

  • Abbreviations: BS, Bloom syndrome; DSB, double-strand break; SDSA, synthesis-dependent strand annealing.

  • Copyright © 2004, The National Academy of Sciences
View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion
Mitch McVey, Jeannine R. LaRocque, Melissa D. Adams, Jeff J. Sekelsky
Proceedings of the National Academy of Sciences Nov 2004, 101 (44) 15694-15699; DOI: 10.1073/pnas.0406157101

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion
Mitch McVey, Jeannine R. LaRocque, Melissa D. Adams, Jeff J. Sekelsky
Proceedings of the National Academy of Sciences Nov 2004, 101 (44) 15694-15699; DOI: 10.1073/pnas.0406157101
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (49)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Modulating the body's networks could become mainstream therapy for many health issues. Image credit: The Feinstein Institutes for Medicine Research.
Core Concept: The rise of bioelectric medicine sparks interest among researchers, patients, and industry
Modulating the body's networks could become mainstream therapy for many health issues.
Image credit: The Feinstein Institutes for Medicine Research.
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
Human heart evolved for endurance
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
Image courtesy of Pixabay/Skeeze.
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
Viscoelastic fluids and wildfire prevention
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
Image courtesy of Jesse D. Acosta.
Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
Climate change and desert bird collapse
Water requirements may make desert bird declines more likely in a warming climate.
Image courtesy of Sean Peterson (photographer).
QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
Featured QnAs
QnAs with NAS member and plant biologist Sheng Yang He
Image courtesy of Sheng Yang He.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490