Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Subnets of scale-free networks are not scale-free: Sampling properties of networks

Michael P. H. Stumpf, Carsten Wiuf, and Robert M. May
PNAS March 22, 2005 102 (12) 4221-4224; https://doi.org/10.1073/pnas.0501179102
Michael P. H. Stumpf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carsten Wiuf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert M. May
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Contributed by Robert M. May, February 11, 2005

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Online Impact

 

Article Information

vol. 102 no. 12 4221-4224
DOI: 
https://doi.org/10.1073/pnas.0501179102
PubMed: 
15767579

Published By: 
National Academy of Sciences
Print ISSN: 
0027-8424
Online ISSN: 
1091-6490
History: 
  • Published in issue March 22, 2005.
  • Published first March 14, 2005.

Copyright & Usage: 
Copyright © 2005, The National Academy of Sciences

Author Information

  1. Michael P. H. Stumpf † , ‡,
  2. Carsten Wiuf §, and
  3. Robert M. May ¶
  1. †Centre for Bioinformatics, Imperial College London, Wolfson Building, London SW7 2AZ, United Kingdom; §Bioinformatics Research Center, University of Aarhus, 8000 Aarhus C, Denmark; and ¶Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
  1. Contributed by Robert M. May, February 11, 2005

Footnotes

  • ↵ ‡ To whom correspondence should be addressed. E-mail: m.stumpf{at}imperial.ac.uk.

  • Author contributions: M.P.H.S., C.W., and R.M.M. designed research, performed research, and wrote the paper.

  • Abbreviation: PGF, probability-generating function.

  • ↵ ∥ For the subnet, we have the PGF \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\;G^{{^\ast}}(s)={{\sum^{{\infty}}_{k=0}}}P^{{^\ast}}(k;p)s^{k}={{\sum^{{\infty}}_{k=0}}}{{\sum_{i{\geq}k}}}P(i)(ps)^{k}(1-p)^{i-k} \left \left(\begin{matrix}i\\ k\end{matrix}\right) \right .\;\end{equation*}\end{document} Summing first over k (0 ≤ k ≤ i), and remembering P(0) = 0 (for scale-free networks), we get \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\;G^{{^\ast}}(s)={{\sum^{{\infty}}_{i=1}}}P(i)[(1-p)+ps]^{i}.\;\end{equation*}\end{document} Note that G*(1) = ΣP(i) = 1, as it should.

    ↵ ∥ The subsequent sample will, however, contain orphan nodes, given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}P^{{^\ast}}(0)=G^{{^\ast}}(0)={{\sum^{{\infty}}_{i=1}}}P(i)(1-p)^{i}\end{equation*}\end{document}. If we redefine P*(0) ≡ 0 by discarding such orphans, we have the subnet defined by Eq. 5, where the renormalization constant C is required to compensate for the deletion of the orphan nodes: C[1 – P*(0)] = 1 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\;C^{-1}={{\sum^{{\infty}}_{i=1}}}P(i)[1-(1-p)^{i}]=1-G(1-p).\;\end{equation*}\end{document}

  • ↵ †† The negative binomial distribution has the PGF G(s) = [1 + (m/k)(1 – s)]–k, where m represents the distribution`s mean value and k characterizes the distribution's “clumpiness” (the variance is given by σ2/m 2 = 1/m + 1/k). This widely studied distribution includes the Poisson distribution (the degree distribution of classical random graphs) as the special case k → ∞ and the exponential or geometric as k = 1. The subnet PGF is obtained, via Eq. 4, by substituting 1 – p(1 – s) for s in G(s), to get G*(s) = [1 + (mp/k)(1 – s)]–k. Thus, the subnet has an identical PGF to the full distribution, excepting only that the mean is reduced to mp (the clumping parameter k is unaltered). The proof for the binomial distribution is even more trivial.

  • ↵ ‡‡ For Eq. 1 with γ = 2, the PGF of the subnet is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}G^{{^\ast}}(s)=C{{\sum^{{\infty}}_{k=1}}}k^{-2}[1-p+ps]^{k}\end{equation*}\end{document}, with C given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}C{{\sum^{{\infty}}_{k=1}}}k^{-2}[1-(1-p)^{k}]=1\end{equation*}\end{document}. Defining u = 1 – p + ps, whence dG*(s)/ds = pdG*/du, we have the degree distribution given by k!P*(k) = pk (dkG*(u)/duk )u = 1 – p. For small p « 1, consider first \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}pdG^{{^\ast}}/du=Cp{{\sum^{{\infty}}_{k=1}}}u^{k-1}/k=-(Cp/u){\mathrm{ln}}(1-u)\end{equation*}\end{document}. This exact result gives P*(1) = –[Cpln(p)]/(1 – p). Further differentiation gives exact, but increasingly complicated, expressions for P*(k > 1). Thus, P*(2) = [Cp/(1 – p)][1 + pln(p)/(1 – p)]. For larger k, P*(k > 2) = [Cp/k(k – 1)][1 + O(p)]. Finally, we can calculate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}C^{-1}=p{\int _{0}^{{\infty}}}\{xe^{x}dx/[(e^{x}-1)(e^{x}-1+p)]\}{\simeq}p[1-{\mathrm{ln}}(p)-(1/2)p{\mathrm{ln}}(p)+(1/4)p{\ldots}]\end{equation*}\end{document}.

  • ↵ §§ By method analogous to those in the previous note, we can obtain, for small p, the analytic results: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\;P^{{^\ast}}(1)=1+p\hspace{.167em}{\mathrm{ln}}(p)/[2{\zeta}(2)]+p \left \left[\frac{1}{2}-\frac{1}{4{\zeta}(2)}\right] \right +{\ldots},\;\end{equation*}\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\;P^{{^\ast}}(2)=-p({\mathrm{ln}}(p))/[2{\zeta}(2)]-\frac{1}{2}p+{\ldots},\;\end{equation*}\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\;P^{{^\ast}}(k>2)=p/[{\zeta}(2)k(k-1)(k-2)]+{\ldots},\;\end{equation*}\end{document} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*} {\mathrm{and}}{\;}C^{-1}=p \left \left[{\zeta}(2)+\frac{1}{2}p\hspace{.167em}{\mathrm{ln}}(p)+p \left \left(\frac{1}{2}{\zeta}(2)-\frac{3}{4}\right) \right +{\ldots}\right] \right .\;\end{equation*}\end{document}

  • Copyright © 2005, The National Academy of Sciences

Cited By...

  • 289 Citations
  • 258 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Uncovering disease-disease relationships through the incomplete interactome
    J. Menche, A. Sharma, M. Kitsak, S. D. Ghiassian, M. Vidal, J. Loscalzo, A.-L. Barabasi
    Science 2015 347 6224
  • Comparing Brain Networks of Different Size and Connectivity Density Using Graph Theory
    Bernadette C. M. van Wijk, Cornelis J. Stam, Andreas Daffertshofer, Olaf Sporns
    PLoS ONE 2010 5 10
  • Structure and dynamics of molecular networks: A novel paradigm of drug discovery
    Peter Csermely, Tamás Korcsmáros, Huba J.M. Kiss, Gábor London, Ruth Nussinov
    Pharmacology & Therapeutics 2013 138 3
  • Estimating the size of the human interactome
    M. P. H. Stumpf, T. Thorne, E. de Silva, R. Stewart, H. J. An, M. Lappe, C. Wiuf
    Proceedings of the National Academy of Sciences 2008 105 19
  • Genetics of global gene expression
    Matthew V. Rockman, Leonid Kruglyak
    Nature Reviews Genetics 2006 7 11
  • Intrinsic Disorder Is a Common Feature of Hub Proteins from Four Eukaryotic Interactomes
    Chad Haynes, Christopher J Oldfield, Fei Ji, Niels Klitgord, Michael E Cusick, Predrag Radivojac, Vladimir N Uversky, Marc Vidal, Lilia M Iakoucheva, Cheryl Arrowsmith
    PLoS Computational Biology 2006 2 8
  • Biological network comparison using graphlet degree distribution
    N. Przulj
    Bioinformatics 2007 23 2
  • Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application
    Mark J. Millan
    Pharmacology & Therapeutics 2006 110 2
  • When individual behaviour matters: homogeneous and network models in epidemiology
    Shweta Bansal, Bryan T Grenfell, Lauren Ancel Meyers
    Journal of The Royal Society Interface 2007 4 16
  • Analyzing and modeling real-world phenomena with complex networks: a survey of applications
    Luciano da Fontoura Costa, Osvaldo N. Oliveira, Gonzalo Travieso, Francisco Aparecido Rodrigues, Paulino Ribeiro Villas Boas, Lucas Antiqueira, Matheus Palhares Viana, Luis Enrique Correa Rocha
    Advances in Physics 2011 60 3
  • Critical Truths About Power Laws
    M. P. H. Stumpf, M. A. Porter
    Science 2012 335 6069
  • Interactome: gateway into systems biology
    Michael E. Cusick, Niels Klitgord, Marc Vidal, David E. Hill
    Human Molecular Genetics 2005 14 suppl_2
  • Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data
    Satoru Hayasaka, Paul J. Laurienti
    NeuroImage 2010 50 2
  • The Landscape of Human Proteins Interacting with Viruses and Other Pathogens
    Matthew D Dyer, T. M Murali, Bruno W Sobral, Edward C Holmes
    PLoS Pathogens 2008 4 2
  • Statistical properties of sampled networks
    Sang Hoon Lee, Pan-Jun Kim, Hawoong Jeong
    Physical Review E 2006 73 1
  • A Small World of Neuronal Synchrony
    Shan Yu, Debin Huang, Wolf Singer, Danko Nikolić
    Cerebral Cortex 2008 18 12
  • A tutorial in connectome analysis: Topological and spatial features of brain networks
    Marcus Kaiser
    NeuroImage 2011 57 3
  • A mixture model for random graphs
    J.-J. Daudin, F. Picard, S. Robin
    Statistics and Computing 2008 18 2
  • Simulation of robustness against lesions of cortical networks
    Marcus Kaiser, Robert Martin, Peter Andras, Malcolm P. Young
    European Journal of Neuroscience 2007 25 10
  • Scale-free networks are rare
    Anna D. Broido, Aaron Clauset
    Nature Communications 2019 10 1
  • Network analysis of protein dynamics
    Csaba Böde, István A. Kovács, Máté S. Szalay, Robin Palotai, Tamás Korcsmáros, Péter Csermely
    FEBS Letters 2007 581 15
  • Protein-protein interaction networks and biology—what's the connection?
    Luke Hakes, John W Pinney, David L Robertson, Simon C Lovell
    Nature Biotechnology 2008 26 1
  • Temporal dynamics and network analysis
    Benjamin Blonder, Tina W. Wey, Anna Dornhaus, Richard James, Andrew Sih
    Methods in Ecology and Evolution 2012 3 6
  • Practical Recommendations on Crawling Online Social Networks
    Minas Gjoka, Maciej Kurant, Carter T. Butts, Athina Markopoulou
    IEEE Journal on Selected Areas in Communications 2011 29 9
  • Modelling the air transport with complex networks: A short review
    Massimiliano Zanin, Fabrizio Lillo
    The European Physical Journal Special Topics 2013 215 1
  • The scaling of human interactions with city size
    Markus Schläpfer, Luís M. A. Bettencourt, Sébastian Grauwin, Mathias Raschke, Rob Claxton, Zbigniew Smoreda, Geoffrey B. West, Carlo Ratti
    Journal of The Royal Society Interface 2014 11 98
  • The powerful law of the power law and other myths in network biology
    Gipsi Lima-Mendez, Jacques van Helden
    Molecular BioSystems 2009 5 12
  • How Scale-Free Are Biological Networks
    Raya Khanin, Ernst Wit
    Journal of Computational Biology 2006 13 3
  • On Unbiased Sampling for Unstructured Peer-to-Peer Networks
    D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, W. Willinger
    IEEE/ACM Transactions on Networking 2009 17 2
  • Thinking Through Networks: A Review of Formal Network Methods in Archaeology
    Tom Brughmans
    Journal of Archaeological Method and Theory 2013 20 4
  • Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps
    Hailiang Huang, Bruno M Jedynak, Joel S Bader, Robert B Russell
    PLoS Computational Biology 2007 3 11
  • Sampling networks of ecological interactions
    Pedro Jordano, Daniel Stouffer
    Functional Ecology 2016 30 12
  • Unraveling Protein Networks with Power Graph Analysis
    Loïc Royer, Matthias Reimann, Bill Andreopoulos, Michael Schroeder, Johannes Berg
    PLoS Computational Biology 2008 4 7
  • Evaluating link prediction methods
    Yang Yang, Ryan N. Lichtenwalter, Nitesh V. Chawla
    Knowledge and Information Systems 2015 45 3
  • Complex networks and simple models in biology
    Eric de Silva, Michael P.H Stumpf
    Journal of The Royal Society Interface 2005 2 5
  • Subsampling effects in neuronal avalanche distributions recorded in vivo
    Viola Priesemann, Matthias HJ Munk, Michael Wibral
    BMC Neuroscience 2009 10 1
  • An Introduction to Metabolic Networks and Their Structural Analysis
    V. Lacroix, L. Cottret, P. Thebault, M.-F. Sagot
    IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008 5 4
  • Some protein interaction data do not exhibit power law statistics
    Reiko Tanaka, Tau-Mu Yi, John Doyle
    FEBS Letters 2005 579 23
  • Twitter reciprocal reply networks exhibit assortativity with respect to happiness
    Catherine A. Bliss, Isabel M. Kloumann, Kameron Decker Harris, Christopher M. Danforth, Peter Sheridan Dodds
    Journal of Computational Science 2012 3 5
  • Functional and evolutionary inference in gene networks: does topology matter?
    Mark L. Siegal, Daniel E. L. Promislow, Aviv Bergman
    Genetica 2006 129 1
  • Analysis of fungal networks
    Luke Heaton, Boguslaw Obara, Vincente Grau, Nick Jones, Toshiyuki Nakagaki, Lynne Boddy, Mark D. Fricker
    Fungal Biology Reviews 2012 26 1
  • Revealing the Hidden Language of Complex Networks
    Ömer Nebil Yaveroğlu, Noël Malod-Dognin, Darren Davis, Zoran Levnajic, Vuk Janjic, Rasa Karapandza, Aleksandar Stojmirovic, Nataša Pržulj
    Scientific Reports 2015 4 1
  • The structure of protein evolution and the evolution of protein structure
    Richard A Goldstein
    Current Opinion in Structural Biology 2008 18 2
  • The effect of contact heterogeneity and multiple routes of transmission on final epidemic size
    Istvan Z. Kiss, Darren M. Green, Rowland R. Kao
    Mathematical Biosciences 2006 203 1
  • Network Sampling
    Nesreen K. Ahmed, Jennifer Neville, Ramana Kompella
    ACM Transactions on Knowledge Discovery from Data 2014 8 2
  • Efficient estimation of graphlet frequency distributions in protein-protein interaction networks
    N. Przulj, D. G. Corneil, I. Jurisica
    Bioinformatics 2006 22 8
  • Infectious disease control using contact tracing in random and scale-free networks
    Istvan Z Kiss, Darren M Green, Rowland R Kao
    Journal of The Royal Society Interface 2006 3 6
  • Protein networking: insights into global functional organization of proteomes
    Enrico Pieroni, Sergio de la Fuente van Bentem, Gianmaria Mancosu, Enrico Capobianco, Heribert Hirt, Alberto de la Fuente
    PROTEOMICS 2008 8 4
  • Sampling properties of random graphs: The degree distribution
    Michael P. H. Stumpf, Carsten Wiuf
    Physical Review E 2005 72 3
  • Prebiotic network evolution: six key parameters
    Philippe Nghe, Wim Hordijk, Stuart A. Kauffman, Sara I. Walker, Francis J. Schmidt, Harry Kemble, Jessica A. M. Yeates, Niles Lehman
    Molecular BioSystems 2015 11 12
  • High-Degree Neurons Feed Cortical Computations
    Nicholas M. Timme, Shinya Ito, Maxym Myroshnychenko, Sunny Nigam, Masanori Shimono, Fang-Chin Yeh, Pawel Hottowy, Alan M. Litke, John M. Beggs, Jonathan W. Pillow
    PLOS Computational Biology 2016 12 5
  • Proteomics: from single molecules to biological pathways
    Sarah R. Langley, Joseph Dwyer, Ignat Drozdov, Xiaoke Yin, Manuel Mayr
    Cardiovascular Research 2013 97 4
  • Graphlet-based measures are suitable for biological network comparison
    W. Hayes, K. Sun, N. Przulj
    Bioinformatics 2013 29 4
  • Exploring complex networks through random walks
    Luciano da Fontoura Costa, Gonzalo Travieso
    Physical Review E 2007 75 1
  • Protein-protein interactions: Making sense of networks via graph-theoretic modeling
    Nataša Pržulj
    BioEssays 2011 33 2
  • Functional brain networks: great expectations, hard times and the big leap forward
    David Papo, Massimiliano Zanin, José Angel Pineda-Pardo, Stefano Boccaletti, Javier M. Buldú
    Philosophical Transactions of the Royal Society B: Biological Sciences 2014 369 1653
  • A Brief History of Statistical Models for Network Analysis and Open Challenges
    Stephen E. Fienberg
    Journal of Computational and Graphical Statistics 2012 21 4
  • The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles
    Pawel Durek, Dirk Walther
    BMC Systems Biology 2008 2 1
  • CONTEST
    Alan Taylor, Desmond J. Higham
    ACM Transactions on Mathematical Software 2009 35 4
  • Subsampling scaling
    A. Levina, V. Priesemann
    Nature Communications 2017 8 1
  • Aggregate Characterization of User Behavior in Twitter and Analysis of the Retweet Graph
    David R. Bild, Yue Liu, Robert P. Dick, Z. Morley Mao, Dan S. Wallach
    ACM Transactions on Internet Technology 2015 15 1
  • Mean clustering coefficients: the role of isolated nodes and leafs on clustering measures for small-world networks
    Marcus Kaiser
    New Journal of Physics 2008 10 8
  • Hubs with Network Motifs Organize Modularity Dynamically in the Protein-Protein Interaction Network of Yeast
    Guangxu Jin, Shihua Zhang, Xiang-Sun Zhang, Luonan Chen, Nick Monk
    PLoS ONE 2007 2 11
  • An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems
    Chuan Lu, Ross D. King
    Bioinformatics 2009 25 16
  • Wildlife contact analysis: emerging methods, questions, and challenges
    Paul C. Cross, Tyler G. Creech, Michael R. Ebinger, Dennis M. Heisey, Kathryn M. Irvine, Scott Creel
    Behavioral Ecology and Sociobiology 2012 66 10
  • The rôle of control and system theory in systems biology
    Peter Wellstead, Eric Bullinger, Dimitrios Kalamatianos, Oliver Mason, Mark Verwoerd
    Annual Reviews in Control 2008 32 1
  • Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox
    Najja Marshall, Nicholas M. Timme, Nicholas Bennett, Monica Ripp, Edward Lautzenhiser, John M. Beggs
    Frontiers in Physiology 2016 7
  • Inferring topology from clustering coefficients in protein-protein interaction networks
    Caroline C Friedel, Ralf Zimmer
    BMC Bioinformatics 2006 7 1
  • Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data
    Yaniv Dover, Jacob Goldenberg, Daniel Shapira
    Marketing Science 2012 31 4
  • Biological function through network topology: a survey of the human diseasome
    V. Janjic, N. Przulj
    Briefings in Functional Genomics 2012 11 6
  • Revealing Missing Parts of the Interactome via Link Prediction
    Yuriy Hulovatyy, Ryan W. Solava, Tijana Milenković, Peter Csermely
    PLoS ONE 2014 9 3
  • Interorganizational Network Structures and Diffusion of Information Through a Health System
    Deborah E. Gibbons
    American Journal of Public Health 2007 97 9
  • Large-Scale, High-Resolution Multielectrode-Array Recording Depicts Functional Network Differences of Cortical and Hippocampal Cultures
    Shinya Ito, Fang-Chin Yeh, Emma Hiolski, Przemyslaw Rydygier, Deborah E. Gunning, Pawel Hottowy, Nicholas Timme, Alan M. Litke, John M. Beggs, Sergio Martinoia
    PLoS ONE 2014 9 8
  • The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms
    G. Alterovitz, T. Muso, M. F. Ramoni
    Briefings in Bioinformatics 2010 11 1
  • Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics
    Adrián Ponce-Alvarez, Adrien Jouary, Martin Privat, Gustavo Deco, Germán Sumbre
    Neuron 2018 100 6
  • Questioning the Ubiquity of Neofunctionalization
    Todd A. Gibson, Debra S. Goldberg, Wen-Hsiung Li
    PLoS Computational Biology 2009 5 1
  • Sampling algorithms for pure network topologies
    Edoardo M. Airoldi, Kathleen M. Carley
    ACM SIGKDD Explorations Newsletter 2005 7 2
  • Agent-based and phylogenetic analyses reveal how HIV-1 moves between risk groups: Injecting drug users sustain the heterosexual epidemic in Latvia
    Frederik Graw, Thomas Leitner, Ruy M. Ribeiro
    Epidemics 2012 4 2
  • Computational challenges in systems biology
    Allison P. Heath, Lydia E. Kavraki
    Computer Science Review 2009 3 1
  • Recent Progress on the Analysis of Power-law Features in Complex Cellular Networks
    J. C. Nacher, T. Akutsu
    Cell Biochemistry and Biophysics 2007 49 1
  • Species interactions: estimating per-individual interaction strength and covariates before simplifying data into per-species ecological networks
    Konstans Wells, Robert B. O'Hara, Robert Freckleton
    Methods in Ecology and Evolution 2013 4 1
  • Networks and webs in ecosystems and financial systems
    Robert M. May
    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2013 371 1987
  • Scale invariance in natural and artificial collective systems: a review
    Yara Khaluf, Eliseo Ferrante, Pieter Simoens, Cristián Huepe
    Journal of The Royal Society Interface 2017 14 136
  • Protein–protein interactions: from global to local analyses
    WP Kelly, MPH Stumpf
    Current Opinion in Biotechnology 2008 19 4
  • Unveiling robustness and heterogeneity through percolation triggered by random-link breakdown
    Yilun Shang
    Physical Review E 2014 90 3
  • Duplication and Divergence Effect on Network Motifs in Undirected Bio-Molecular Networks
    Pei Wang, Jinhu Lu, Xinghuo Yu, Zengrong Liu
    IEEE Transactions on Biomedical Circuits and Systems 2015 9 3
  • Genetic analysis of the Candida albicans biofilm transcription factor network using simple and complex haploinsufficiency
    Virginia E. Glazier, Thomas Murante, Daniel Murante, Kristy Koselny, Yuan Liu, Dongyeop Kim, Hyun Koo, Damian J. Krysan, Geraldine Butler
    PLOS Genetics 2017 13 8
  • Graphical Features of Functional Genes in Human Protein Interaction Network
    Pei Wang, Yao Chen, Jinhu Lu, Qingyun Wang, Xinghuo Yu
    IEEE Transactions on Biomedical Circuits and Systems 2016 10 3
  • Irregular cellular learning automata-based algorithm for sampling social networks
    Mina Ghavipour, Mohammad Reza Meybodi
    Engineering Applications of Artificial Intelligence 2017 59
  • On the distribution of links in the interbank network: evidence from the e-MID overnight money market
    Daniel Fricke, Thomas Lux
    Empirical Economics 2015 49 4
  • Sampling for Global Epidemic Models and the Topology of an International Airport Network
    Georgiy Bobashev, Robert J. Morris, D. Michael Goedecke, Nick Monk
    PLoS ONE 2008 3 9
  • Epidemic predictions in an imperfect world: modelling disease spread with partial data
    Peter M. Dawson, Marleen Werkman, Ellen Brooks-Pollock, Michael J. Tildesley
    Proceedings of the Royal Society B: Biological Sciences 2015 282 1808
  • Evaluation of Graph Sampling: A Visualization Perspective
    Yanhong Wu, Nan Cao, Daniel Archambault, Qiaomu Shen, Huamin Qu, Weiwei Cui
    IEEE Transactions on Visualization and Computer Graphics 2017 23 1
  • From Top-Down to Bottom-Up: Computational Modeling Approaches for Cellular Redoxin Networks
    Ché S. Pillay, Jan-Hendrik Hofmeyr, Lefentse N. Mashamaite, Johann M. Rohwer
    Antioxidants & Redox Signaling 2013 18 16
  • Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods
    Luis P. Fernandes, Alessia Annibale, Jens Kleinjung, Anthony C. C. Coolen, Franca Fraternali, Kumar Selvarajoo
    PLoS ONE 2010 5 8
  • Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis
    Jinping Gu, Xiaomin Hu, Wei Shao, Tianhai Ji, Wensheng Yang, Huiqin Zhuo, Zeyu Jin, Huiying Huang, Jiacheng Chen, Caihua Huang, Donghai Lin
    Oncotarget 2016 7 37
  • Moment-Based Spectral Analysis of Large-Scale Networks Using Local Structural Information
    V. M. Preciado, A. Jadbabaie
    IEEE/ACM Transactions on Networking 2013 21 2
  • Prediction of conditional gene essentiality through graph theoretical analysis of genome-wide functional linkages
    P. Manimaran, Shubhada R. Hegde, Shekhar C. Mande
    Molecular BioSystems 2009 5 12
  • Estimation of Global Network Statistics from Incomplete Data
    Catherine A. Bliss, Christopher M. Danforth, Peter Sheridan Dodds, Tobias Preis
    PLoS ONE 2014 9 10
  • Generating confidence intervals on biological networks
    Thomas Thorne, Michael PH Stumpf
    BMC Bioinformatics 2007 8 1
  • Generative probabilistic models for protein–protein interaction networks—the biclique perspective
    Regev Schweiger, Michal Linial, Nathan Linial
    Bioinformatics 2011 27 13
  • Transactions on Computational Systems Biology III
    Michael P. H. Stumpf, Piers J. Ingram, Ian Nouvel, Carsten Wiuf
    2005 3737
  • Random removal of edges from scale free graphs
    S. Martin, R.D. Carr, J.-L. Faulon
    Physica A: Statistical Mechanics and its Applications 2006 371 2
  • Reconstructing gene regulatory networks: from random to scale-free connectivity
    J. Wildenhain, E.J. Crampin
    IEE Proceedings - Systems Biology 2006 153 4
  • Testing Statistical Laws in Complex Systems
    Martin Gerlach, Eduardo G. Altmann
    Physical Review Letters 2019 122 16
  • Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties
    Wilberforce Zachary Ouma, Katja Pogacar, Erich Grotewold, Ilya Ioshikhes
    PLOS Computational Biology 2018 14 4
  • Graph spectral analysis of protein interaction network evolution
    Thomas Thorne, Michael P. H. Stumpf
    Journal of The Royal Society Interface 2012 9 75
  • How affinity influences tolerance in an idiotypic network
    Emma Hart, Hugues Bersini, Francisco C. Santos
    Journal of Theoretical Biology 2007 249 3
  • Network epidemiology and plant trade networks
    Marco Pautasso, Mike J. Jeger
    AoB PLANTS 2014 6
  • Can a time varying external drive give rise to apparent criticality in neural systems?
    Viola Priesemann, Oren Shriki, Francesco P. Battaglia
    PLOS Computational Biology 2018 14 5
  • Distance metric learning for complex networks: Towards size-independent comparison of network structures
    Sadegh Aliakbary, Sadegh Motallebi, Sina Rashidian, Jafar Habibi, Ali Movaghar
    Chaos: An Interdisciplinary Journal of Nonlinear Science 2015 25 2
  • Feature Extraction from Degree Distribution for Comparison and Analysis of Complex Networks
    Sadegh Aliakbary, Jafar Habibi, Ali Movaghar
    The Computer Journal 2015 58 9
  • Growing biological networks: Beyond the gene-duplication model
    Hugues Bersini, Tom Lenaerts, Francisco C. Santos
    Journal of Theoretical Biology 2006 241 3
  • Inference of Transmission Network Structure from HIV Phylogenetic Trees
    Federica Giardina, Ethan Obie Romero-Severson, Jan Albert, Tom Britton, Thomas Leitner, Mark M. Tanaka
    PLOS Computational Biology 2017 13 1
  • On the multi-dimensionality and sampling of air transport networks
    Seddik Belkoura, Andrew Cook, José Maria Peña, Massimiliano Zanin
    Transportation Research Part E: Logistics and Transportation Review 2016 94
  • Sampling properties of directed networks
    S.-W. Son, C. Christensen, G. Bizhani, D. V. Foster, P. Grassberger, M. Paczuski
    Physical Review E 2012 86 4
  • What you see is not what you get: how sampling affects macroscopic features of biological networks
    A. Annibale, A. C. C. Coolen
    Interface Focus 2011 1 6
  • An improved sampling method of complex network
    Qi Gao, Xintong Ding, Feng Pan, Weixing Li
    International Journal of Modern Physics C 2014 25 05
  • Binomial subsampling
    Carsten Wiuf, Michael P.H Stumpf
    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2006 462 2068
  • Structural and dynamical analysis of biological networks
    Cecilia Klein, Andrea Marino, Marie-France Sagot, Paulo Vieira Milreu, Matteo Brilli
    Briefings in Functional Genomics 2012 11 6
  • A note on reconstructing animal social networks from independent small-group observations
    Charles Perreault
    Animal Behaviour 2010 80 3
  • Assessing the Exceptionality of Coloured Motifs in Networks
    Sophie Schbath, Vincent Lacroix, Marie-France Sagot
    EURASIP Journal on Bioinformatics and Systems Biology 2009 2009 1
  • Controllability of giant connected components in a directed network
    Xueming Liu, Linqiang Pan, H. Eugene Stanley, Jianxi Gao
    Physical Review E 2017 95 4
  • The Cartographers toolbox: building bigger and better human protein interaction networks
    C. M. Sanderson
    Briefings in Functional Genomics and Proteomics 2008 8 1
  • Emergence of scale-free distribution in protein–protein interaction networks based on random selection of interacting domain pairs
    J.C. Nacher, M. Hayashida, T. Akutsu
    Biosystems 2009 95 2
  • Influence of Selected Formation Rules for Finite Population Networks with Fixed Macrostructures: Implications for Individual-Based Model of Infectious Diseases
    M. C. BOILY, Z. ASGHAR, T. GARSKE, A. C. GHANI, R. POULIN
    Mathematical Population Studies 2007 14 4
  • Network simulations to study seed exchange for agrobiodiversity conservation
    Marco Pautasso
    Agronomy for Sustainable Development 2015 35 1
  • Rich-Club Phenomenon in the Interactome of P. falciparum—Artifact or Signature of a Parasitic Life Style?
    Stefan Wuchty, Neil Hall
    PLoS ONE 2007 2 3
  • Sampling promotes community structure in social and information networks
    Neli Blagus, Lovro Šubelj, Gregor Weiss, Marko Bajec
    Physica A: Statistical Mechanics and its Applications 2015 432
  • Variance reduction in large graph sampling
    Jianguo Lu, Hao Wang
    Information Processing & Management 2014 50 3
  • A Comparative Analysis of Behaviors and Sexual Affiliation Networks among Men Who Have Sex With Men in Hong Kong
    Ka Kit Leung, Chin Man Poon, Shui Shan Lee
    Archives of Sexual Behavior 2015 44 7
  • A timestepper-based approach for the coarse-grained analysis of microscopic neuronal simulators on networks: Bifurcation and rare-events micro- to macro-computations
    Konstantinos G. Spiliotis, Constantinos I. Siettos
    Neurocomputing 2011 74 17
  • Generating social network data using partially described networks: an example informing avian influenza control in the British poultry industry
    Sema Nickbakhsh, Louise Matthews, Paul R Bessell, Stuart WJ Reid, Rowland R Kao
    BMC Veterinary Research 2011 7 1
  • What Big Data tells: Sampling the social network by communication channels
    János Török, Yohsuke Murase, Hang-Hyun Jo, János Kertész, Kimmo Kaski
    Physical Review E 2016 94 5
  • Flexible sampling large-scale social networks by self-adjustable random walk
    Xiao-Ke Xu, Jonathan J.H. Zhu
    Physica A: Statistical Mechanics and its Applications 2016 463
  • Incomplete and noisy network data as a percolation process
    Michael P. H. Stumpf, Carsten Wiuf
    Journal of The Royal Society Interface 2010 7 51
  • Nested subgraphs of complex networks
    Bernat Corominas-Murtra, José F F Mendes, Ricard V Solé
    Journal of Physics A: Mathematical and Theoretical 2008 41 38
  • The relative importance of color signaling for plant generalization in pollination networks
    Julien P. Renoult, Nico Blüthgen, Julia Binkenstein, Christiane N. Weiner, Michael Werner, H. Martin Schaefer
    Oikos 2015 124 3
  • A group evolving-based framework with perturbations for link prediction
    Cuiqi Si, Licheng Jiao, Jianshe Wu, Jin Zhao
    Physica A: Statistical Mechanics and its Applications 2017 475
  • Building protein-protein interaction networks for Leishmania species through protein structural information
    Crhisllane Rafaele dos Santos Vasconcelos, Túlio de Lima Campos, Antonio Mauro Rezende
    BMC Bioinformatics 2018 19 1
  • Characterizing the Topology of Probabilistic Biological Networks
    Andrei Todor, Alin Dobra, Tamer Kahveci
    IEEE/ACM Transactions on Computational Biology and Bioinformatics 2013 10 4
  • Evolutionary Systems Biology
    Arno Steinacher, Orkun S. Soyer
    2012 751
  • Evolutionary analysis reveals low coverage as the major challenge for protein interaction network alignment
    Waqar Ali, Charlotte M. Deane
    Molecular BioSystems 2010 6 11
  • Experimental and Computational Analysis of a Large Protein Network That Controls Fat Storage Reveals the Design Principles of a Signaling Network
    Bader Al-Anzi, Patrick Arpp, Sherif Gerges, Christopher Ormerod, Noah Olsman, Kai Zinn, Greg Tucker-Kellogg
    PLOS Computational Biology 2015 11 5
  • Financial Cryptography and Data Security
    Aron Laszka, Benjamin Johnson, Jens Grossklags, Mark Felegyhazi
    2014 8437
  • Insights into the transmission of respiratory infectious diseases through empirical human contact networks
    Chunlin Huang, Xingwu Liu, Shiwei Sun, Shuai Cheng Li, Minghua Deng, Guangxue He, Haicang Zhang, Chao Wang, Yang Zhou, Yanlin Zhao, Dongbo Bu
    Scientific Reports 2016 6 1
  • Knowledge acquisition from social platforms based on network distributions fitting
    Jarosław Jankowski, Radosław Michalski, Piotr Bródka, Przemysław Kazienko, Sonja Utz
    Computers in Human Behavior 2015 51
  • On cycles in the transcription network of Saccharomyces cerevisiae
    Jieun Jeong, Piotr Berman
    BMC Systems Biology 2008 2 1
  • Real time enhanced random sampling of online social networks
    Giannis Haralabopoulos, Ioannis Anagnostopoulos
    Journal of Network and Computer Applications 2014 41
  • A multi-layered approach to protein data integration for diabetes research
    Ken McGarry, James Chambers, Giles Oatley
    Artificial Intelligence in Medicine 2007 41 2
  • Computational Complexity
    Sui Huang, Stuart A. Kauffman
    2012
  • Empirical comparison of network sampling: How to choose the most appropriate method?
    Neli Blagus, Lovro Šubelj, Marko Bajec
    Physica A: Statistical Mechanics and its Applications 2017 477
  • Plant Genomics
    Jessica Lopez, M. Shahid Mukhtar
    2017 1610
  • Robustness Analysis of Network Modularity
    Jongrae Kim, Kwang-Hyun Cho
    IEEE Transactions on Control of Network Systems 2016 3 4
  • Sensitivity of complex networks measurements
    P R Villas Boas, F A Rodrigues, G Travieso, L da F Costa
    Journal of Statistical Mechanics: Theory and Experiment 2010 2010 03
  • Tutorial on biological networks
    Francisco G. Vital-Lopez, Vesna Memišević, Bhaskar Dutta
    Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2012 2 4
  • Universal scaling across biochemical networks on Earth
    Hyunju Kim, Harrison B. Smith, Cole Mathis, Jason Raymond, Sara I. Walker
    Science Advances 2019 5 1
  • A traditional cattle trade network in Tak province, Thailand and its potential in the spread of infectious diseases
    Chamrat Khengwa, Papaspong Jongchansittoe, Poonyapat Sedwisai, Anuwat Wiratsudakul
    Animal Production Science 2017 57 1
  • Assessing the Exceptionality of Coloured Motifs in Networks
    Sophie Schbath, Vincent Lacroix, Marie-France Sagot
    EURASIP Journal on Bioinformatics and Systems Biology 2009 2009
  • Common neighbour structure and similarity intensity in complex networks
    Lei Hou, Kecheng Liu
    Physics Letters A 2017 381 39
  • Description of spreading dynamics by microscopic network models and macroscopic branching processes can differ due to coalescence
    Johannes Zierenberg, Jens Wilting, Viola Priesemann, Anna Levina
    Physical Review E 2020 101 2
  • Effects of fear factors in disease propagation
    Yubo Wang, Gaoxi Xiao, Limsoon Wong, Xiuju Fu, Stefan Ma, Tee Hiang Cheng
    Journal of Physics A: Mathematical and Theoretical 2011 44 35
  • Functional-Network-Based Gene Set Analysis Using Gene-Ontology
    Billy Chang, Rafal Kustra, Weidong Tian, Chuhsing Kate Hsiao
    PLoS ONE 2013 8 2
  • Interrogating metabolism as an electron flow system
    Christian Zerfaß, Munehiro Asally, Orkun S. Soyer
    Current Opinion in Systems Biology 2019 13
  • Random Phenotypic Variation of Yeast (Saccharomyces cerevisiae) Single-Gene Knockouts Fits a Double Pareto-Lognormal Distribution
    John H. Graham, Daniel T. Robb, Amy R. Poe, Alberto de la Fuente
    PLoS ONE 2012 7 11
  • Structure versus function: a topological perspective on immune networks
    Emma Hart, Hugues Bersini, Francisco Santos
    Natural Computing 2010 9 3
  • The scale-free nature of protein sequence space
    Patrick C. F. Buchholz, Catharina Zeil, Jürgen Pleiss, Dante R. Chialvo
    PLOS ONE 2018 13 8
  • Assessing Coverage of Protein Interaction Data Using Capture–Recapture Models
    W. P. Kelly, M. P. H. Stumpf
    Bulletin of Mathematical Biology 2012 74 2
  • Assessing the effectiveness of real-world network simplification
    Neli Blagus, Lovro Šubelj, Marko Bajec
    Physica A: Statistical Mechanics and its Applications 2014 413
  • Biomedical Informatics
    Michael Baitaluk
    2009 569
  • Module-Based Association Analysis for Omics Data with Network Structure
    Zhi Wang, Arnab Maity, Chuhsing Kate Hsiao, Deepak Voora, Rima Kaddurah-Daouk, Jung-Ying Tzeng, Zhongxue Chen
    PLOS ONE 2015 10 3
  • Noise-tolerant model selection and parameter estimation for complex networks
    Sadegh Aliakbary, Sadegh Motallebi, Sina Rashidian, Jafar Habibi, Ali Movaghar
    Physica A: Statistical Mechanics and its Applications 2015 427
  • On analyzing and evaluating privacy measures for social networks under active attack
    Bhaskar DasGupta, Nasim Mobasheri, Ismael G. Yero
    Information Sciences 2019 473
  • Sample size considerations for livestock movement network data
    Caitlin N. Pfeiffer, Simon M. Firestone, Angus J.D. Campbell, John W.A. Larsen, Mark A. Stevenson
    Preventive Veterinary Medicine 2015 122 4
  • Stylized facts in social networks: Community-based static modeling
    Hang-Hyun Jo, Yohsuke Murase, János Török, János Kertész, Kimmo Kaski
    Physica A: Statistical Mechanics and its Applications 2018 500
  • Systems-Level Evidence of Transcriptional Co-Regulation of Yeast Protein Complexes
    J. William Lee, Tomasz Zemojtel, Eugene Shakhnovich
    Journal of Computational Biology 2009 16 2
  • A nonparametric significance test for sampled networks
    Andrew Elliott, Elizabeth Leicht, Alan Whitmore, Gesine Reinert, Felix Reed-Tsochas, Alfonso Valencia
    Bioinformatics 2018 34 1
  • Bond and site color-avoiding percolation in scale-free networks
    Andrea Kadović, Sebastian M. Krause, Guido Caldarelli, Vinko Zlatic
    Physical Review E 2018 98 6
  • Efficient sampling of complex network with modified random walk strategies
    Yunya Xie, Shuhua Chang, Zhipeng Zhang, Mi Zhang, Lei Yang
    Physica A: Statistical Mechanics and its Applications 2018 492
  • Functional Coherence of Molecular Networks in Bioinformatics
    Tijana Milenković, Nataša Pržulj
    2012
  • Handbook of Statistical Systems Biology
    Waqar Ali, Charlotte Deane, Gesine Reinert
    2011
  • Locating the Epidemic Source in Complex Networks with Sparse Observers
    Xiang Li, Xiaojie Wang, Chengli Zhao, Xue Zhang, Dongyun Yi
    Applied Sciences 2019 9 18
  • Multilayer network simplification: Approaches, models and methods
    Roberto Interdonato, Matteo Magnani, Diego Perna, Andrea Tagarelli, Davide Vega
    Computer Science Review 2020 36
  • Percolation transition in a dynamically clustered network
    A. Zen, A. Kabakçıoğlu, A. L. Stella
    Physical Review E 2007 76 2
  • Power-law distribution of degree–degree distance: A better representation of the scale-free property of complex networks
    Bin Zhou, Xiangyi Meng, H. Eugene Stanley
    Proceedings of the National Academy of Sciences 2020 117 26
  • Quantum walk search on Kronecker graphs
    Thomas G. Wong, Konstantin Wünscher, Joshua Lockhart, Simone Severini
    Physical Review A 2018 98 1
  • Computational Intelligence Methods for Bioinformatics and Biostatistics
    Annalisa Barla, Giuseppe Jurman, Roberto Visintainer, Margherita Squillario, Michele Filosi, Samantha Riccadonna, Cesare Furlanello
    2012 7548
  • Dynamic exploration of networks: from general principles to the traceroute process
    L. Dall'Asta
    The European Physical Journal B 2007 60 1
  • Handbook of Statistical Systems Biology
    Desmond J. Higham, Nataša Pržulj
    2011
  • Inverse network sampling to explore online brand allegiance
    PETER GRINDROD, DESMOND J. HIGHAM, PETER LAFLIN, AMANDA OTLEY, JONATHAN A. WARD
    European Journal of Applied Mathematics 2016 27 6
  • Methods of Microarray Data Analysis V
    Raya Khanin, Ernst Wit
    2007
  • Sampling networks by nodal attributes
    Yohsuke Murase, Hang-Hyun Jo, János Török, János Kertész, Kimmo Kaski
    Physical Review E 2019 99 5
  • The Emergence of Overlapping Scale-free Genetic Architecture in Digital Organisms
    P. Gerlee, T. Lundh
    Artificial Life 2008 14 3
  • Uncovering Social Network Structures through Penetration Data
    Yaniv Dover, Jacob Goldenberg, Daniel Shapira
    SSRN Electronic Journal 2009
  • Uniform random sampling not recommended for large graph size estimation
    Jianguo Lu, Hao Wang
    Information Sciences 2017 421
  • Volume explored by a branching random walk on general graphs
    Ignacio Bordeu, Saoirse Amarteifio, Rosalba Garcia-Millan, Benjamin Walter, Nanxin Wei, Gunnar Pruessner
    Scientific Reports 2019 9 1
  • A network epidemic model for online community commissioning data
    Clement Lee, Andrew Garbett, Darren J. Wilkinson
    Statistics and Computing 2018 28 4
  • Advances in Information Retrieval
    Wolfgang Gatterbauer
    2011 6611
  • Analysis of Genetic Interaction Networks Shows That Alternatively Spliced Genes Are Highly Versatile
    David Talavera, Ritika Sheoran, Simon C. Lovell, Charlotte M. Deane
    PLoS ONE 2013 8 2
  • Assembling real networks from synthetic and unstructured subsets: the corporate reporting case
    Eduardo Viegas, Hayato Goto, Misako Takayasu, Hideki Takayasu, Henrik Jeldtoft Jensen
    Scientific Reports 2019 9 1
  • Bacterial Molecular Networks
    Joseph Geraci, Geoffrey Liu, Igor Jurisica
    2012 804
  • Encyclopedia of Social Network Analysis and Mining
    Katharina Anna Zweig
    2014
  • Estimation of structural properties of online social networks at the extreme
    Emrah Cem, Kamil Sarac
    Computer Networks 2016 108
  • Mining protein–protein interaction networks: denoising effects
    Elisabetta Marras, Enrico Capobianco
    Journal of Statistical Mechanics: Theory and Experiment 2009 2009 01
  • Priority Attachment: a Comprehensive Mechanism for Generating Networks
    Mikołaj Morzy, Tomasz Kajdanowicz, Przemysław Kazienko, Grzegorz Miebs, Arkadiusz Rusin
    Scientific Reports 2019 9 1
  • Quantifying noise in mass spectrometry and yeast two-hybrid protein interaction detection experiments
    A. Annibale, A. C. C. Coolen, N. Planell-Morell
    Journal of The Royal Society Interface 2015 12 110
  • Scatter networks: a new approach for analysing information scatter
    Lada A Adamic, K Suresh, Xiaolin Shi
    New Journal of Physics 2007 9 7
  • Spanning traceroutes over modular networks and general scaling degree distributions
    Alberto Lovison, Gianmarco Manzini, Amos Maritan, Mario Putti, Andrea Rinaldo
    Physical Review E 2010 81 3
  • Statistical Network Analysis: Models, Issues, and New Directions
    David M. Blei
    2007 4503
  • Synconset Waves and Chains: Spiking Onsets in Synchronous Populations Predict and Are Predicted by Network Structure
    Mohan Raghavan, Bharadwaj Amrutur, Rishikesh Narayanan, Sujit Kumar Sikdar, William W. Lytton
    PLoS ONE 2013 8 10
  • The accumulative law and its probability model: an extension of the Pareto distribution and the log-normal distribution
    Minyu Feng, Liang-Jian Deng, Feng Chen, Matjaž Perc, Jürgen Kurths
    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2020 476 2237
  • A Bayesian Model to Predict Content Creation with Two-Sided Peer Influence in Content Platforms
    Bin Zhang, Anjana Susarla, Ramayya Krishnan
    SSRN Electronic Journal 2014
  • A Bootstrap Method for Goodness of Fit and Model Selection with a Single Observed Network
    Sixing Chen, Jukka-Pekka Onnela
    Scientific Reports 2019 9 1
  • A Unified Framework for the Evaluation of Complex Networks
    Bo Jiao, Xun Long Pang, Rong Hua Guo, Jing Du
    Applied Mechanics and Materials 2014 670-671
  • A benchmarking study of embedding-based entity alignment for knowledge graphs
    Zequn Sun, Qingheng Zhang, Wei Hu, Chengming Wang, Muhao Chen, Farahnaz Akrami, Chengkai Li
    Proceedings of the VLDB Endowment 2020 13 12
  • A dynamic sampling algorithm based on learning automata for stochastic trust networks
    Mina Ghavipour, Mohammad Reza Meybodi
    Knowledge-Based Systems 2021 212
  • Advances in Artificial Life
    Hugues Bersini, Tom Lenaerts, Francisco C. Santos
    2005 3630
  • An Abnormal IP Traffic Detection Model Based on Scale-Free Network
    Jun Li, Yan Niu
    Applied Mechanics and Materials 2010 44-47
  • Complex Networks
    Rodrigo Palheta, Vasco Furtado
    2013 424
  • Complex Sciences
    Yubo Wang, Jie Hu, Gaoxi Xiao, Limsoon Wong, Stefan Ma, Tee Hiang Cheng
    2009 5
  • Computational Systems Biology
    Paola Lecca, Angela Re, Adaoha Ihekwaba, Ivan Mura, Thanh-Phuong Nguyen
    2016
  • Computational Systems Biology
    2016
  • Computational Systems Neurobiology
    Lysimachos Zografos, Andrew J. Pocklington, J. Douglas Armstrong
    2012
  • Critical thinking of scale-free networks: similarities and differences in power-law random graphs
    Dinghua Shi
    National Science Review 2014 1 3
  • Discussion
    Keith Briggs
    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2008 366 1872
  • Distributed and Sequential Algorithms for Bioinformatics
    K. Erciyes
    2015 23
  • Encyclopedia of Social Network Analysis and Mining
    Katharina Anna Zweig
    2018
  • Encyclopedia of Social Network Analysis and Mining
    Katharina Anna Zweig
    2017
  • Fast Representative Sampling in Large-Scale Online Social Networks
    Guangren Cai, Gang Lu, Junxia Guo, Cheng Ling, Ruiqi Li
    IEEE Access 2020 8
  • Graph-Theoretic Concepts in Computer Science
    Alberto Marchetti-Spaccamela
    2011 6986
  • Graphs with Asymptotically Invariant Degree Sequences under Restriction
    Joshua Cooper, Linyuan Lu
    Internet Mathematics 2011 7 1
  • Joint Vertex Degrees in the Inhomogeneous Random Graph Model ℊ(n,{pij})
    Kaisheng Lin, Gesine Reinert
    Advances in Applied Probability 2012 44 1
  • Learning Automata Approach for Social Networks
    Alireza Rezvanian, Behnaz Moradabadi, Mina Ghavipour, Mohammad Mehdi Daliri Khomami, Mohammad Reza Meybodi
    2019 820
  • List sampling for large graphs
    Muhammad Irfan Yousuf, Suhyun Kim
    Intelligent Data Analysis 2018 22 2
  • Modeling and Analysis of Bio-molecular Networks
    Jinhu Lü, Pei Wang
    2020
  • Modeling and Analysis of Bio-molecular Networks
    Jinhu Lü, Pei Wang
    2020
  • Modeling and Analysis of Bio-molecular Networks
    Jinhu Lü, Pei Wang
    2020
  • Modeling and Analysis of Bio-molecular Networks
    Jinhu Lü, Pei Wang
    2020
  • Network Analysis Literacy
    Katharina A. Zweig
    2016
  • Network Science
    Nataša Pržulj
    2010
  • On the Assessment of Systematic Risk in Networked Systems
    Aron Laszka, Benjamin Johnson, Jens Grossklags
    ACM Transactions on Internet Technology 2018 18 4
  • On the effect of neuronal spatial subsampling in small‐world networks
    Mattia Bonzanni, Kimberly M. Bockley, David L. Kaplan
    European Journal of Neuroscience 2020
  • Properties of interaction networks underlying the minority game
    Inés Caridi
    Physical Review E 2014 90 5
  • Quantitative Methods for Investigating Infectious Disease Outbreaks
    Ping Yan, Gerardo Chowell
    2019 70
  • Reinforcement learning approach for robustness analysis of complex networks with incomplete information
    Meng Tian, Zhengcheng Dong, Xianpei Wang
    Chaos, Solitons & Fractals 2021 144
  • Revisiting interval graphs for Network Science
    Chuan Wen Loe, Henrik Jeldtoft Jensen
    Journal of Complex Networks 2016 4 2
  • Riscos e Possível Solução Associados às Amostras em Redes de Coautoria
    Uajara Pessoa Araujo, Fabrício Molica de Mendonça, Rita de Cássia Leal Campos, Lara Figueiredo e Silva
    Revista de Administração Contemporânea 2018 22 5
  • Sampling on bipartite networks: a comparative analysis of eight crawling methods
    Saran Chen, Xin Lu, Zhong Liu, Zhongwei Jia
    Journal of Statistical Mechanics: Theory and Experiment 2018 2018 7
  • Social Informatics
    Jarosław Jankowski, Radosław Michalski, Piotr Bródka, Przemysław Kazienko, Sonja Utz
    2015 9471
  • Some theoretical notes on agrobiodiversity: spatial heterogeneity and population interactions
    Diego Griffon, Maria-Josefina Hernandez
    Agroecology and Sustainable Food Systems 2020 44 6
  • Stratified Sampling Large Relational Networks Using Topologically Divided Stratums
    Yueping Li, Xiaolin Du, Yunming Ye, Eric Ke Wang
    Procedia Engineering 2011 15
  • Systems Biological Approaches in Infectious Diseases
    Michael P. Stumpf, Brian D. Robertson, Ken Duncan, Douglas B. Young
    2007
  • The Detection Method of Network Topological Property Based on Multiple Sampling
    Cong Huang, D G Zhang, T J Yang, H Yang
    Applied Mechanics and Materials 2012 256-259
  • The Functional Role of Critical Dynamics in Neural Systems
    Viola Priesemann, Anna Levina, Jens Wilting
    2019 11
  • The impact of sampling patients on measuring physician patient‐sharing networks using Medicare data
    A. James O'Malley, Jukka‐Pekka Onnela, Nancy L. Keating, Bruce E. Landon
    Health Services Research 2020
  • The network boundary specification problem in the global and world city research: investigation of the reliability of empirical results from sampled networks
    Vladimír Pažitka, Dariusz Wójcik
    Journal of Geographical Systems 2020
  • Transitivity correlation: A descriptive measure of network transitivity
    David Dekker, David Krackhardt, Tom A. B. Snijders
    Network Science 2019 7 3
  • True scale-free networks hidden by finite size effects
    Matteo Serafino, Giulio Cimini, Amos Maritan, Andrea Rinaldo, Samir Suweis, Jayanth R. Banavar, Guido Caldarelli
    Proceedings of the National Academy of Sciences 2021 118 2

Article usage

Article usage: March 2005 to January 2021

AbstractFullPdf
Mar 20051424245828
Apr 2005159142244
May 20055671163
Jun 2005505668
Jul 2005305656
Aug 2005375550
Sep 2005596948
Oct 2005296792
Nov 2005345968
Dec 2005474755
Total 200519258671672
Jan 2006366870
Feb 2006616869
Mar 2006214855
Apr 2006254849
May 2006214536
Jun 2006323647
Jul 2006404334
Aug 2006323937
Sep 2006264546
Oct 2006414658
Nov 2006394177
Dec 2006342240
Total 2006408549618
Jan 2007182740
Feb 2007184260
Mar 2007313965
Apr 2007345363
May 2007233639
Jun 2007375249
Jul 2007322928
Aug 2007183340
Sep 2007222748
Oct 2007295553
Nov 2007234638
Dec 2007102216
Total 2007295461539
Jan 20081830412
Feb 2008123133
Mar 2008218862
Apr 2008174157
May 2008304742
Jun 2008335152
Jul 2008523543
Aug 2008613832
Sep 2008597027
Oct 2008695743
Nov 2008622933
Dec 2008736645
Total 2008507583881
Jan 2009673558
Feb 2009714542
Mar 2009615233
Apr 2009414828
May 2009635730
Jun 20097570101
Jul 2009716130
Aug 2009434936
Sep 2009497537
Oct 2009686446
Nov 2009526848
Dec 2009597138
Total 2009720695527
Jan 2010446440
Feb 2010356415
Mar 2010526339
Apr 2010617030
May 2010526423
Jun 2010369242
Jul 2010434920
Aug 2010497735
Sep 2010426728
Oct 2010529843
Nov 20105410138
Dec 2010607828
Total 2010580887381
Jan 20113810543
Feb 2011277832
Mar 2011336127
Apr 2011434323
May 2011444941
Jun 2011463229
Jul 2011273425
Aug 2011315221
Sep 2011396737
Oct 2011368138
Nov 2011597140
Dec 2011254222
Total 2011448715378
Jan 2012264732
Feb 2012918862
Mar 2012407744
Apr 2012315736
May 2012527340
Jun 2012416233
Jul 2012526024
Aug 2012344924
Sep 2012384723
Oct 2012335119
Nov 2012395528
Dec 2012284126
Total 2012505707391
Jan 2013375120
Feb 2013378830
Mar 2013414836
Apr 2013445540
May 2013284415
Jun 2013454021
Jul 2013454231
Aug 2013273720
Sep 2013394924
Oct 2013263317
Nov 2013387635
Dec 2013443320
Total 2013451596309
Jan 2014334613
Feb 2014444524
Mar 2014308422
Apr 2014564828
May 2014494727
Jun 2014184832
Jul 2014395020
Aug 2014283219
Sep 2014253713
Oct 2014435226
Nov 2014413120
Dec 2014263012
Total 2014432550256
Jan 2015435130
Feb 2015294315
Mar 2015324816
Apr 2015294320
May 2015265119
Jun 2015433027
Jul 2015224925
Aug 2015153819
Sep 2015344919
Oct 2015475117
Nov 2015435629
Dec 2015358144
Total 2015398590280
Jan 2016317321
Feb 2016255315
Mar 2016124815
Apr 2016315313
May 2016325325
Jun 2016313118
Jul 2016322917
Aug 2016364016
Sep 2016654231
Oct 2016515226
Nov 2016543731
Dec 2016563439
Total 2016456545267
Jan 2017302415
Feb 2017364620
Mar 20173910848
Apr 2017634133
May 2017474726
Jun 2017276718
Jul 2017344819
Aug 2017313713
Sep 2017284813
Oct 2017723832
Nov 2017604551
Dec 2017312515
Total 2017498574303
Jan 20181138426
Feb 2018524919
Mar 2018696440
Apr 2018657225
May 2018838918
Jun 201811110832
Jul 2018809134
Aug 2018918917
Sep 2018645824
Oct 2018166329
Nov 2018137535
Dec 201875136
Total 2018764893335
Jan 201976730
Feb 2019107631
Mar 2019229049
Apr 2019195824
May 2019107530
Jun 201965323
Jul 201973733
Aug 2019104533
Sep 201954731
Oct 2019147286
Nov 2019115228
Dec 201955822
Total 2019126730420
Jan 2020146522
Feb 202094729
Mar 202096024
Apr 2020145143
May 2020710641
Jun 202074223
Jul 2020104025
Aug 202094843
Sep 2020278442
Oct 2020146239
Nov 2020215033
Dec 2020184112
Total 2020159696376
Jan 202152217
Total 202152217
Total8677106607950
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Subnets of scale-free networks are not scale-free: Sampling properties of networks
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Subnets of scale-free networks are not scale-free: Sampling properties of networks
Michael P. H. Stumpf, Carsten Wiuf, Robert M. May
Proceedings of the National Academy of Sciences Mar 2005, 102 (12) 4221-4224; DOI: 10.1073/pnas.0501179102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Subnets of scale-free networks are not scale-free: Sampling properties of networks
Michael P. H. Stumpf, Carsten Wiuf, Robert M. May
Proceedings of the National Academy of Sciences Mar 2005, 102 (12) 4221-4224; DOI: 10.1073/pnas.0501179102
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences of the United States of America: 102 (12)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Random Sampling of Networks
    • Discussion
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490