Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

An index to quantify an individual's scientific research output

J. E. Hirsch
PNAS November 15, 2005 102 (46) 16569-16572; https://doi.org/10.1073/pnas.0507655102
J. E. Hirsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Communicated by Manuel Cardona, Max Planck Institute for Solid State Research, Stuttgart, Germany, September 1, 2005 (received for review August 15, 2005)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

I propose the index h, defined as the number of papers with citation number ≥h, as a useful index to characterize the scientific output of a researcher.

  • citations
  • impact
  • unbiased

For the few scientists who earn a Nobel prize, the impact and relevance of their research is unquestionable. Among the rest of us, how does one quantify the cumulative impact and relevance of an individual's scientific research output? In a world of limited resources, such quantification (even if potentially distasteful) is often needed for evaluation and comparison purposes (e.g., for university faculty recruitment and advancement, award of grants, etc.).

The publication record of an individual and the citation record clearly are data that contain useful information. That information includes the number (Np ) of papers published over n years, the number of citations (Nj c ) for each paper (j), the journals where the papers were published, their impact parameter, etc. This large amount of information will be evaluated with different criteria by different people. Here, I would like to propose a single number, the “h index,” as a particularly simple and useful way to characterize the scientific output of a researcher.

A scientist has index h if h of his or her Np papers have at least h citations each and the other (Np – h) papers have ≤h citations each.

The research reported here concentrated on physicists; however, I suggest that the h index should be useful for other scientific disciplines as well. (At the end of the paper I discuss some observations for the h index in biological sciences.) The highest h among physicists appears to be E. Witten's h, which is 110. That is, Witten has written 110 papers with at least 110 citations each. That gives a lower bound on the total number of citations to Witten's papers at h 2 = 12,100. Of course, the total number of citations (Nc,tot ) will usually be much larger than h 2, because h 2 both underestimates the total number of citations of the h most-cited papers and ignores the papers with <h citations. The relation between Nc,tot and h will depend on the detailed form of the particular distribution (1), and it is useful to define the proportionality constant a as Math I find empirically that a ranges between 3 and 5.

Other prominent physicists with high hs are A. J. Heeger (h = 107), M. L. Cohen (h = 94), A. C. Gossard (h = 94), P. W. Anderson (h = 91), S. Weinberg (h = 88), M. E. Fisher (h = 88), M. Cardona (h = 86), P. G. deGennes (h = 79), J. N. Bahcall (h = 77), Z. Fisk (h = 75), D. J. Scalapino (h = 75), G. Parisi (h = 73), S. G. Louie (h = 70), R. Jackiw (h = 69), F. Wilczek (h = 68), C. Vafa (h = 66), M. B. Maple (h = 66), D. J. Gross (h = 66), M. S. Dresselhaus (h = 62), and S. W. Hawking (h = 62). I argue that h is preferable to other single-number criteria commonly used to evaluate scientific output of a researcher, as follows:

  1. Total number of papers (Np ). Advantage: measures productivity. Disadvantage: does not measure importance or impact of papers.

  2. Total number of citations (Nc,tot ). Advantage: measures total impact. Disadvantage: hard to find and may be inflated by a small number of “big hits,” which may not be representative of the individual if he or she is a coauthor with many others on those papers. In such cases, the relation in Eq. 1 will imply a very atypical value of a, >5. Another disadvantage is that Nc,tot gives undue weight to highly cited review articles versus original research contributions.

  3. Citations per paper (i.e., ratio of Nc,tot to Np ). Advantage: allows comparison of scientists of different ages. Disadvantage: hard to find, rewards low productivity, and penalizes high productivity.

  4. Number of “significant papers,” defined as the number of papers with >y citations (for example, y = 50). Advantage: eliminates the disadvantages of criteria i, ii, and iii and gives an idea of broad and sustained impact. Disadvantage: y is arbitrary and will randomly favor or disfavor individuals, and y needs to be adjusted for different levels of seniority.

  5. Number of citations to each of the q most-cited papers (for example, q = 5). Advantage: overcomes many of the disadvantages of the criteria above. Disadvantage: It is not a single number, making it more difficult to obtain and compare. Also, q is arbitrary and will randomly favor and disfavor individuals.

Instead, the proposed h index measures the broad impact of an individual's work, avoids all of the disadvantages of the criteria listed above, usually can be found very easily by ordering papers by “times cited” in the Thomson ISI Web of Science database (http://isiknowledge.com),† and gives a ballpark estimate of the total number of citations (Eq. 1).

Thus, I argue that two individuals with similar hs are comparable in terms of their overall scientific impact, even if their total number of papers or their total number of citations is very different. Conversely, comparing two individuals (of the same scientific age) with a similar number of total papers or of total citation count and very different h values, the one with the higher h is likely to be the more accomplished scientist.

For a given individual, one expects that h should increase approximately linearly with time. In the simplest possible model, assume that the researcher publishes p papers per year and that each published paper earns c new citations per year every subsequent year. The total number of citations after n + 1 years is then Math Assuming all papers up to year y contribute to the index h, we have Math Math The left side of Eq. 3a is the number of citations to the most recent of the papers contributing to h; the left side of Eq. 3b is the total number of papers contributing to h. Hence, from Eq. 3, Math The total number of citations (for not-too-small n) is then approximately Math of the form Eq. 1. The coefficient a depends on the number of papers and the number of citations per paper earned per year as given by Eq. 5. As stated earlier, we find empirically that a ≈ 3–5 is a typical value. The linear relation Math should hold quite generally for scientists who produce papers of similar quality at a steady rate over the course of their careers; of course, m will vary widely among different researchers. In the simple linear model, m is related to c and p as given by Eq. 4. Quite generally, the slope of h versus n, the parameter m, should provide a useful yardstick to compare scientists of different seniority.

In the linear model, the minimum value of a in Eq. 1 is a = 2, for the case c = p, where the papers with >h citations and those with <h citations contribute equally to the total Nc,tot . The value of a will be larger for both c > p and c < p. For c > p, most contributions to the total number of citations arise from the “highly cited papers” (the h papers that have Nc > h), whereas for c < p, it is the sparsely cited papers (the Np – h papers that have <h citations each) that give the largest contribution to Nc,tot . We find that the first situation holds in the vast majority of, if not all, cases. For the linear model defined in this example, a = 4 corresponds to c/p = 5.83 (the other value that yields a = 4, c/p = 0.17, is unrealistic).

The linear model defined above corresponds to the distribution Math where Nc (y) is the number of citations to the yth paper (ordered from most cited to least cited) and N 0 is the number of citations of the most highly cited paper (N 0 = cn in the example above). The total number of papers ym is given by Nc (ym ) = 0; hence, Math We can write N 0 and ym in terms of a defined in Eq. 1 as Math Math For a = 2, N 0 = ym = 2h. For larger a, the upper sign in Eq. 9 corresponds to the case where the highly cited papers dominate (the more realistic case), and the lower sign corresponds to the case where the less frequently cited papers dominate the total citation count.

In a more realistic model, Nc (y) will not be a linear function of y. Note that a = 2 can safely be assumed to be a lower bound quite generally, because a smaller value of a would require the second derivative ∂2 Nc /∂y 2 to be negative over large regions of y, which is not realistic. The total number of citations is given by the area under the Nc (y) curve that passes through the point Nc (h) = h. In the linear model, the lowest a = 2 corresponds to the line of slope –1, as shown in Fig. 1.

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Schematic curve of number of citations versus paper number, with papers numbered in order of decreasing citations. The intersection of the 45° line with the curve gives h. The total number of citations is the area under the curve. Assuming the second derivative is nonnegative everywhere, the minimum area is given by the distribution indicated by the dotted line, yielding a = 2 in Eq. 1.

A more realistic model would be a stretched exponential of the form Math Note that for β ≤ 1, N″ c(y) > 0 for all y; hence, a > 2 is true. We can write the distribution in terms of h and a as Math with I(β) the integral Math and α determined by the equation Math The maximally cited paper has citations Math and the total number of papers (with at least one citation) is determined by N(ym ) = 1 as Math

A given researcher's distribution can be modeled by choosing the most appropriate β and a for that case. For example, for β = 1, if a = 3, α = 0.661, N 0 = 4.54h, and ym = h[1 + .66lnh]. With a = 4, α = 0.4644, N 0 = 8.61h, and ym = h[1 + 0.46ln(h)]. For β = 0.5, the lowest possible value of a is 3.70; for that case, N 0 = 7.4h and ym = h[1 + 0.5ln(h)]2. Larger a values will increase N 0 and reduce ym . For β = 2/3, the smallest possible a is a = 3.24, for which case N 0 = 4.5h and ym = h[1 + 0.66ln(h)]3/2.

The linear relation between h and n (Eq. 6) will of course break down when the researcher slows down in paper production or stops publishing altogether. There is a time lag between the two events. In the linear model, assuming the researcher stops publishing after n stop years, h continues to increase at the same rate for a time Math and then stays constant, because now all published papers contribute to h. In a more realistic model, h will smoothly level off as n increases rather than with a discontinuous change in slope. Still, quite generally, the time lag will be larger for scientists who have published for many years, as Eq. 16 indicates.

Furthermore, in reality, of course, not all papers will eventually contribute to h. Some papers with low citations will never contribute to a researcher's h, especially if written late in the career, when h is already appreciable. As discussed by Redner (3), most papers earn their citations over a limited period of popularity and then they are no longer cited. Hence, it will be the case that papers that contributed to a researcher's h early in his or her career will no longer contribute to h later in the individual's career. Nevertheless, it is of course always true that h cannot decrease with time. The paper or papers that at any given time have exactly h citations are at risk of being eliminated from the individual's h count as they are superseded by other papers that are being cited at a higher rate. It is also possible that papers “drop out” and then later come back into the h count, as would occur for the kind of papers termed “sleeping beauties” (4).

For the individual researchers mentioned earlier, I find n from the time elapsed since their first published paper till the present and find the following values for the slope m defined in Eq. 6: Witten, m = 3.89; Heeger, m = 2.38; Cohen, m = 2.24; Gossard, m = 2.09; Anderson, m = 1.88; Weinberg, m = 1.76; Fisher, m = 1.91; Cardona, m = 1.87; deGennes, m = 1.75; Bahcall, m = 1.75; Fisk, m = 2.14; Scalapino, m = 1.88; Parisi, m = 2.15; Louie, m = 2.33; Jackiw, m = 1.92; Wilczek, m = 2.19; Vafa, m = 3.30; Maple, m = 1.94; Gross, m = 1.69; Dresselhaus, m = 1.41; and Hawking, m = 1.59. From inspection of the citation records of many physicists, I conclude the following:

  1. A value of m ≈ 1 (i.e., an h index of 20 after 20 years of scientific activity), characterizes a successful scientist.

  2. A value of m ≈ 2 (i.e., an h index of 40 after 20 years of scientific activity), characterizes outstanding scientists, likely to be found only at the top universities or major research laboratories.

  3. A value of m ≈ 3 or higher (i.e., an h index of 60 after 20 years, or 90 after 30 years), characterizes truly unique individuals.

The m parameter ceases to be useful if a scientist does not maintain his or her level of productivity, whereas the h parameter remains useful as a measure of cumulative achievement that may continue to increase over time even long after the scientist has stopped publishing.

Based on typical h and m values found, I suggest (with large error bars) that for faculty at major research universities, h ≈ 12 might be a typical value for advancement to tenure (associate professor) and that h ≈ 18 might be a typical value for advancement to full professor. Fellowship in the American Physical Society might occur typically for h ≈ 15–20. Membership in the National Academy of Sciences of the United States of America may typically be associated with h ≈ 45 and higher, except in exceptional circumstances. Note that these estimates correspond roughly to the typical number of years of sustained research production assuming an m ≈ 1 value; the time scales of course will be shorter for scientists with higher m values. Note that the time estimates are taken from the publication of the first paper, which typically occurs some years before the Ph.D. is earned.

There are, however, a number of caveats that should be kept in mind. Obviously, a single number can never give more than a rough approximation to an individual's multifaceted profile, and many other factors should be considered in combination in evaluating an individual. Furthermore, the fact that there can always be exceptions to rules should be kept in mind, especially in life-changing decisions such as the granting or denying of tenure. There will be differences in typical h values in different fields, determined in part by the average number of references in a paper in the field, the average number of papers produced by each scientist in the field, and the size (number of scientists) of the field (although, to a first approximation in a larger field, there are more scientists to share a larger number of citations, so typical h values should not necessarily be larger). Scientists working in nonmainstream areas will not achieve the same very high h values as the top echelon of those working in highly topical areas. Although I argue that a high h is a reliable indicator of high accomplishment, the converse is not necessarily always true. There is considerable variation in the skewness of citation distributions even within a given subfield, and for an author with a relatively low h that has a few seminal papers with extraordinarily high citation counts, the h index will not fully reflect that scientist's accomplishments. Conversely, a scientist with a high h achieved mostly through papers with many coauthors would be treated overly kindly by his or her h. Subfields with typically large collaborations (e.g., high-energy experiment) will exhibit larger h values, and I suggest that in cases of large differences in the number of coauthors, it may be useful in comparing different individuals to normalize h by a factor that reflects the average number of coauthors. For determining the scientific “age” in the computation of m, the very first paper may sometimes not be the appropriate starting point if it represents a relatively minor early contribution well before sustained productivity ensued.

Finally, in any measure of citations, ideally one would like to eliminate the self-citations. Although self-citations can obviously increase a scientist's h, their effect on h is much smaller than on the total citation count. First, all self-citations to papers with <h citations are irrelevant, as are the self-citations to papers with many more than h citations. To correct h for self-citations, one would consider the papers with number of citations just >h and count the number of self-citations in each. If a paper with h + n citations has >n self-citations, it would be dropped from the h count, and h would drop by 1. Usually, this procedure would involve very few if any papers. As the other face of this coin, scientists intent in increasing their h index by self-citations would naturally target those papers with citations just <h.

As an interesting sample population, I computed h and m for the physicists who obtained Nobel prizes in the last 20 years (for calculating m, I used the latter of the first published paper year or 1955, the first year in the ISI database). However, the set was further restricted by including only the names that uniquely identified the scientist in the ISI citation index, which restricted our set to 76% of the total. It is, however, still an unbiased estimator, because the commonality of the name should be uncorrelated with h and m. h indices range from 22 to 79, and m indices range from 0.47 to 2.19. Averages and standard deviations are 〈h 〉= 41, σ h = 15 and 〈m 〉= 1.14, σ m = 0.47. The distribution of h indices is shown in Fig. 2; the median is at hm = 35, lower than the mean due to the tail for high h values. It is interesting that Nobel prize winners have substantial h indices (84% had an h of at least 30), indicating that Nobel prizes do not originate in one stroke of luck but in a body of scientific work. Notably, the values of m found are often not high compared with other successful scientists (49% of our sample had m < 1), clearly because Nobel prizes are often awarded long after the period of maximum productivity of the researchers.

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Histogram giving the number of Nobel prize recipients in physics in the last 20 years versus their h index. The peak is at the h index between 35 and 39.

As another example, among newly elected members of the National Academy of Sciences in physics and astronomy in 2005, I find 〈h 〉 = 44, σ h = 14, highest h = 71, lowest h = 20, and median hm = 46. Among the total membership in the National Academy of Sciences in physics, the subgroup of last names starting with “A” and “B” has 〈h 〉 = 38, σ h = 10, and hm = 37. These examples further indicate that the index h is a stable and consistent estimator of scientific achievement.

An intriguing idea is the extension of the h-index concept to groups of individuals.‡ The SPIRES high-energy physics literature database (www.slac.stanford.edu/spires/hep) recently implemented the h index in their citation summaries, and it also allows the computation of h for groups of scientists. The overall h index of a group will generally be larger than that of each of the members of the group but smaller than the sum of the individual h indices, because some of the papers that contribute to each individual's h will no longer contribute to the group's h. For example, the overall h index of the condensed matter group at the University of California at San Diego physics department is h = 118, of which the largest individual contribution is 25; the highest individual h is 66, and the sum of individual hs is >300. The contribution of each individual to the group's h is not necessarily proportional to the individual's h, and the highest contributor to the group's h will not necessarily be the individual with highest h. In fact, in principle (although rarely in practice), the lowest-h individual in a group could be the largest contributor to the group's h. For a prospective graduate student considering different graduate programs, a ranking of groups or departments in his or her chosen area according to their overall h index would likely be of interest, and for administrators concerned with these issues, the ranking of their departments or entire institution according to the overall h could also be of interest.

To conclude, I discuss some observations in the fields of biological and biomedical sciences. From the list compiled by Christopher King of Thomson ISI of the most highly cited scientists in the period 1983–2002 (5), I found the h indices for the top 10 on that list, all in the life sciences, which are, in order of decreasing h: S. H. Snyder, h = 191; D. Baltimore, h = 160; R. C. Gallo, h = 154; P. Chambon, h = 153; B. Vogelstein, h = 151; S. Moncada, h = 143; C. A. Dinarello, h = 138; T. Kishimoto, h = 134; R. Evans, h = 127; and A. Ullrich, h = 120. It can be seen that, not surprisingly, all of these highly cited researchers also have high h indices and that high h indices in the life sciences are much higher than in physics. Among 36 new inductees in the National Academy of Sciences in biological and biomedical sciences in 2005, I find 〈h 〉= 57, σ h = 22, highest h = 135, lowest h = 18, and median hm = 57. These latter results confirm that h indices in biological sciences tend to be higher than in physics; however, they also indicate that the difference appears to be much higher at the high end than on average. Clearly, more research in understanding similarities and differences of h index distributions in different fields of science would be of interest.

In summary, I have proposed an easily computable index, h, which gives an estimate of the importance, significance, and broad impact of a scientist's cumulative research contributions. I suggest that this index may provide a useful yardstick with which to compare, in an unbiased way, different individuals competing for the same resource when an important evaluation criterion is scientific achievement.

Acknowledgments

I am grateful to many colleagues in the University of California at San Diego Condensed Matter group and especially Ivan Schuller for stimulating discussions on these topics and encouragement to publish these ideas. I also thank the many readers who wrote with interesting comments since this paper was first posted at arXiv.org (6); the referees who made constructive suggestions, all of which led to improvements in the paper; and Travis Brooks and the SPIRES database administration for rapidly implementing the h index in their database.

Footnotes

  • ↵ * E-mail: jhirsch{at}ucsd.edu.

  • Author contributions: J.E.H. designed research, performed research, analyzed data, and wrote the paper.

  • ↵ † Of course, the database used must be complete enough to cover the full period spanned by the individual's publications.

  • ↵ ‡ This was first introduced in the SPIRES database.

  • Copyright © 2005, The National Academy of Sciences
View Abstract

References

  1. ↵
    Laherrere, J. & Sornette, D. (1998) Eur. Phys. J. E Soft Matter B2 , 525–539.
    OpenUrl
  2. Redner, S. (1998) Eur. Phys. J. E Soft Matter B4 , 131–134.
  3. ↵
    Redner, S. (2005) Phys. Today 58 , 49–54.
    OpenUrl
  4. ↵
    van Raan, A. F. J. (2004) Scientometrics 59 , 467–472.
    OpenUrlCrossRef
  5. ↵
    King, C. (2003) Sci. Watch 14 , no. 5, 1.
  6. ↵
    Hirsch, J. E. (2005) arXiv.org E-Print Archive (Aug. 3, 2005). Available at http://arxiv.org/abs/physics/0508025.
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
An index to quantify an individual's scientific research output
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
An index to quantify an individual's scientific research output
J. E. Hirsch
Proceedings of the National Academy of Sciences Nov 2005, 102 (46) 16569-16572; DOI: 10.1073/pnas.0507655102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
An index to quantify an individual's scientific research output
J. E. Hirsch
Proceedings of the National Academy of Sciences Nov 2005, 102 (46) 16569-16572; DOI: 10.1073/pnas.0507655102
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences of the United States of America: 102 (46)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Penguin swimming
Origin and diversification of penguins
Juliana Vianna and Rauri Bowie explain the origin and diversification of penguins.
Listen
Past PodcastsSubscribe
Opinion: Cultural and linguistic diversities are crucial pillars of biodiversity
To best manage natural systems, modern societies must consider alternative views and interpretations of the natural world.
Inner Workings: Sub buoys prospects for 3D map of marine microbial communities
Implications range from elucidating metabolic pathways that help facilitate greenhouse gas release, to revealing compounds for medicine or pollution remediation.
Image credit: Mak Saito (Woods Hole Oceanographic Institution, Woods Hole, MA).
Ancient genomes reveal demographic history of France
A large genomic dataset reveals ancient demographic events that accompanied the transition to agriculture and changes in metallurgic practices in France.
Image credit: Pixabay/DavidRockDesign.
Satellite in orbit
Orbital-use fees in satellite industry
A study finds that imposing a tax on orbiting satellites could increase the value of the satellite industry from $600 billion to $3 trillion by 2040 by decreasing collision risks and space debris.
Image credit: NASA.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2020 National Academy of Sciences. Online ISSN 1091-6490