Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP

David D. Hackney
PNAS December 20, 2005 102 (51) 18338-18343; https://doi.org/10.1073/pnas.0505288102
David D. Hackney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Edwin W. Taylor, Northwestern University Feinberg School of Medicine, Chicago, IL, and approved October 25, 2005 (received for review June 23, 2005)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Although the steps for the forward reaction of ATP hydrolysis by the motor protein kinesin have been studied extensively, the rates for the reverse reactions and thus the energy changes at each step are not as well defined. Oxygen isotopic exchange between water and Pi was used to evaluate the reverse rates. The fraction of the kinesin·ADP·Pi complex that reverts to ATP before release of Pi during net hydrolysis was ≈0 and ≈2.6% in the absence and presence of microtubules (MTs), respectively. The rate of synthesis of bound ATP from free Pi and the MT·kinesin·ADP complex was ≈1.7 M–1·s–1 (K 0.5 ADP = 70 μM) with monomeric kinesin in the absence of net hydrolysis. Synthesis of bound ATP from the ADP of the tethered head of a dimer–MT complex was 20-fold faster than for the monomer–MT complex. This MT-activated ATP synthesis at the tethered head is in marked contrast to the lack of MT stimulation of ADP release from the same site. The more rapid ATP synthesis with dimers suggests that the tethered head binds behind the strongly attached head, because this positions the neck linker of the tethered head toward the plus end of the MT and would thus facilitate its docking on synthesis of ATP. The observed rate of ATP synthesis also puts limits on the overall energetics that suggest that a significant fraction of the free energy of ATP hydrolysis is available to drive the docking of the neck linker on binding of ATP.

  • ATPase
  • energy coupling
  • motility
  • motor protein
  • isotopic exchange

Footnotes

  • ↵ * E-mail: ddh{at}andrew.cmu.edu.

  • Author contributions: D.D.H. designed and performed research.

  • Conflict of interest statement: No conflicts declared.

  • This paper was submitted directly (Track II) to the PNAS office.

  • Abbreviations: P c, partition coefficient; MT, microtubule; NL, neck linker.

  • Copyright © 2005, The National Academy of Sciences
View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP
David D. Hackney
Proceedings of the National Academy of Sciences Dec 2005, 102 (51) 18338-18343; DOI: 10.1073/pnas.0505288102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP
David D. Hackney
Proceedings of the National Academy of Sciences Dec 2005, 102 (51) 18338-18343; DOI: 10.1073/pnas.0505288102
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences of the United States of America: 102 (51)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490