Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain

Nicholas R. Guydosh and Steven M. Block
PNAS May 23, 2006 103 (21) 8054-8059; https://doi.org/10.1073/pnas.0600931103
Nicholas R. Guydosh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Steven M. Block
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sblock@stanford.edu
  1. Edited by Michael E. Fisher, University of Maryland, College Park, MD, and approved April 11, 2006 (received for review February 3, 2006)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

The two-headed kinesin motor harnesses the energy of ATP hydrolysis to take 8-nm steps, walking processively along a microtubule, alternately stepping with each of its catalytic heads in a hand-over-hand fashion. Two persistent challenges for models of kinesin motility are to explain how the two heads are coordinated (“gated”) and when the translocation step occurs relative to other events in the mechanochemical reaction cycle. To investigate these questions, we used a precision optical trap to measure the single-molecule kinetics of kinesin in the presence of substrate analogs beryllium fluoride or adenylyl-imidodiphosphate. We found that normal stepping patterns were interspersed with long pauses induced by analog binding, and that these pauses were interrupted by short-lived backsteps. After a pause, processive stepping could only resume once the kinesin molecule took an obligatory, terminal backstep, exchanging the positions of its front and rear heads, presumably to allow release of the bound analog from the new front head. Preferential release from the front head implies that the kinetics of the two heads are differentially affected when both are bound to the microtubule, presumably by internal strain that is responsible for the gating. Furthermore, we found that ATP binding was required to reinitiate processive stepping after the terminal backstep. Together, our results support stepping models in which ATP binding triggers the mechanical step and the front head is gated by strain.

  • motor coordination
  • optical tweezers
  • single-molecule biophysics
  • gating
  • processivity

Footnotes

  • §To whom correspondence should be addressed. E-mail: sblock{at}stanford.edu
  • Author contributions: N.R.G. and S.M.B. designed research; N.R.G. performed research; N.R.G. contributed new reagents/analytic tools; N.R.G. analyzed data; N.R.G. wrote the paper; and S.M.B. edited the manuscript.

  • Conflict of interest statement: No conflicts declared.

  • This paper was submitted directly (Track II) to the PNAS office.

  • Abbreviations:

    Abbreviations:

    BeFx,
    beryllium fluoride;
    MT,
    microtubule;
    AMP-PNP,
    adenylyl-imidodiphosphate
  • © 2006 by The National Academy of Sciences of the USA
View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain
Nicholas R. Guydosh, Steven M. Block
Proceedings of the National Academy of Sciences May 2006, 103 (21) 8054-8059; DOI: 10.1073/pnas.0600931103

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain
Nicholas R. Guydosh, Steven M. Block
Proceedings of the National Academy of Sciences May 2006, 103 (21) 8054-8059; DOI: 10.1073/pnas.0600931103
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 103 (21)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490