Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Higher origination and extinction rates in larger mammals

Lee Hsiang Liow, Mikael Fortelius, Ella Bingham, Kari Lintulaakso, Heikki Mannila, Larry Flynn, and Nils Chr. Stenseth
  1. *Center for Ecological & Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway;
  2. †Department of Geology, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland;
  3. ‡Institute of Biotechnology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland;
  4. §Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki, P.O. Box 68, FIN-00014 Helsinki, Finland;
  5. ¶Helsinki Institute for Information Technology, Department of Computer and Information Science, Helsinki University of Technology, P.O. Box 5400, FIN-02015 Helsinki, Finland; and
  6. ‖Peabody Museum, Harvard University, Cambridge, MA 02138

See allHide authors and affiliations

PNAS April 22, 2008 105 (16) 6097-6102; first published April 15, 2008; https://doi.org/10.1073/pnas.0709763105
Lee Hsiang Liow
*Center for Ecological & Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mikael Fortelius
†Department of Geology, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland;
‡Institute of Biotechnology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ella Bingham
§Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki, P.O. Box 68, FIN-00014 Helsinki, Finland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kari Lintulaakso
†Department of Geology, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heikki Mannila
§Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki, P.O. Box 68, FIN-00014 Helsinki, Finland;
¶Helsinki Institute for Information Technology, Department of Computer and Information Science, Helsinki University of Technology, P.O. Box 5400, FIN-02015 Helsinki, Finland; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Larry Flynn
‖Peabody Museum, Harvard University, Cambridge, MA 02138
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nils Chr. Stenseth
*Center for Ecological & Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: n.c.stenseth@bio.uio.no
  1. Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved February 5, 2008 (received for review October 14, 2007)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Do large mammals evolve faster than small mammals or vice versa? Because the answer to this question contributes to our understanding of how life-history affects long-term and large-scale evolutionary patterns, and how microevolutionary rates scale-up to macroevolutionary rates, it has received much attention. A satisfactory or consistent answer to this question is lacking, however. Here, we take a fresh look at this problem using a large fossil dataset of mammals from the Neogene of the Old World (NOW). Controlling for sampling biases, calculating per capita origination and extinction rates of boundary-crossers and estimating survival probabilities using capture-mark-recapture (CMR) methods, we found the recurring pattern that large mammal genera and species have higher origination and extinction rates, and therefore shorter durations. This pattern is surprising in the light of molecular studies, which show that smaller animals, with their shorter generation times and higher metabolic rates, have greater absolute rates of evolution. However, higher molecular rates do not necessarily translate to higher taxon rates because both the biotic and physical environments interact with phenotypic variation, in part fueled by mutations, to affect origination and extinction rates. To explain the observed pattern, we propose that the ability to evolve and maintain behavior such as hibernation, torpor and burrowing, collectively termed “sleep-or-hide” (SLOH) behavior, serves as a means of environmental buffering during expected and unexpected environmental change. SLOH behavior is more common in some small mammals, and, as a result, SLOH small mammals contribute to higher average survivorship and lower origination probabilities among small mammals.

  • body size
  • environmental buffering
  • metabolism
  • Neogene mammals
  • turnover

Evolution operates at different scales of time and levels of the biological hierarchy (1). Body size covaries with many individual and species level traits (2), each of which could influence the tempo of evolution at population, species and clade levels. Multiple studies have shown that smaller sized mammals have higher molecular rates of evolution in absolute time, possibly because of a generation time effect and/or metabolic rate effect (3⇓⇓⇓⇓–8). Higher molecular rates may translate to higher rates of phenotypic changes (9 but see 10, 11) and a greater chance of reproductive isolation, which could ultimately lead to higher speciation rates (12) and higher rates of pseudoextinction, which could be observed as higher extinction rates among fossil taxa. As such, small mammals could be expected to have higher origination and extinction rates as observed in the fossil record. However, empirical studies on historical extinctions show that large mammals are at higher risk of extinction and have been selectively removed (13⇓⇓⇓–17), as is also indicated by the Pleistocene megafauna extinction literature (18, 19), even though body size per se may not always be a good predictor of extinction risk (20⇓–22). Neither molecular studies nor research on historical extinctions and extinction in the shallow fossil record gives us direct insight into the distribution of taxon durations and long-term turnover rates. Previous studies show mixed results on mammal size-biased selectivity. Three possible scenarios have been described, namely, as no size bias (23, 24), greater survivorship in large mammals versus small (25, 26), and greater survivorship in small mammals versus large (27, 28). However, little is known about mammal body size biases in origination rates in the fossil record. The uncertainty in both the simple existence of a body size bias in origination and extinction rates, as well as the direction in which the bias should manifest itself, is considerable. On average, compared within groups, species with larger body sizes often have wider geographic ranges (24, 29), need greater patch sizes (30), have smaller population sizes/lower densities/abundances (31), have longer generation times (32), have lower fecundity (33), have lower specific production rates (34), and have longer individual life spans and lower metabolic rates (35). These traits potentially push survivorship and the propensity to generate new species and genera in opposing directions: larger mammals have wider geographic ranges and potentially greater dispersal abilities that could lower their extinction risk (36). Conversely, the longer generation times and smaller population sizes of larger mammals might increase extinction risk (37). Similarly, the smaller effective population size of larger mammals may confer higher speciation and origination rates, but, simultaneously, their ability to disperse and encourage gene flow may dampen these rates.

Here, we use a large Neogene Old Word (NOW) fossil mammal dataset (38) to study whether there are body size biases in taxon durations, survivorship, and originations. Common problems encountered in studying fossil lineages are the heterogeneous quality of localities and the uncertain endpoints of taxon durations. In addition, although taphonomic differences among mammals of different body sizes have long been recognized (39, 40), the bias introduced into preservation rates has not been incorporated in analyses in a comprehensive fashion. We embrace these issues and clearly demonstrate, using various analytical approaches, that large mammals have both higher extinction and origination rates and therefore a duration distribution that has a more truncated right tail.

Results and Discussion

Among mammal genera with shorter durations, there is a predominance of large mammals (Artiodactyla, Carnivora, Creodonta, Hyracoidea, Perissodactyla, Primates, Proboscidea, and Tubulidentata) whereas, among those with longer durations, there is an excess of small mammals (Insectivora, Rodentia, and Lagomorpha) (Fig. 1 and supporting information (SI) Fig. S1). Mean and median durations of large and small mammal genera reflect the same tendency: small genera have greater mean and median durations than large ones (Kolmogorov–Smirnov test, P < 0.05, Mann–Whitney U test < 0.05; Table S1 in Dataset S1). At species level, the same difference is present in duration means, although it is not statistically significant (Table S1 in Dataset S1). This difference in durations could be due to only a lower rate of extinction, but we find that large mammal genera have both higher per capita rates of origination and extinction than small mammals (Table 1 and Table S2 in Dataset S1; Mann–Whitney U test < 0.05). The differences in extinction rates are greater than in origination rates, in general (Table S2 in Dataset S1). Using a capture-mark-recapture (CMR) approach, we conclude similarly that large animals have comparatively lower survivorship (Table S3 in Dataset S1). The best models in each case from CMR analyses always include a body size effect, and the weights for these top models are high (Table S3 in Dataset S1), regardless of the sub-setting or temporal binning of the data. The estimates for body size effect, and their lower confidence limits, are positive (Table 2), indicating that large mammals survive with a lower probability. Species results are statistically weaker or insignificant, because species occurrences are sparse, but nevertheless point in the same direction (CMR species results not presented).

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Histogram of durations of extinct small and large mammal genera. This histogram represents the full dataset (All); for subsets, see Fig. S1. Proportions are calculated for small (●) and large (○) mammals separately. One-million-year bins are plotted.

View this table:
  • View inline
  • View popup
Table 1.

Per capita rates of origination and extinction

View this table:
  • View inline
  • View popup
Table 2.

Body size effects on survivorship and preservation

Large mammal genera from NOW (Artiodactyla, Carnivora, Creodonta, Hyracoidea, Perissodactyla, Primates, Proboscidea, and Tubulidentata), for which we have body mass estimates via a nearest living relative approach, truly have greater body mass (Fig. 2; Kolmogorov–Smirnov test P < 0.0001) compared with small mammals (Insectivora, Rodentia, and Lagomorpha). Unfortunately, because the duration distributions of these genera are based on truncated durations, we cannot distinguish their duration distribution from that of small mammals for which we have similar body mass estimates (Kolmogorov–Smirnov test P = 0.43). Body size is indeed a general predictor of mammal taxon durations (this study) even though there are certainly short-duration small and long-duration large mammal species and genera (see SI Text for a discussion).

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Histograms of ln body mass of NOW mammal genera designated large (Upper) and small (Lower). Body masses are inferred by using a nearest relative approach. N, sample size;m, mean natural log (ln) body mass (in grams).

How much of this detected difference is due to preservation differences? Small and large mammals have different modes of preservation and are often collected in the field and processed in the laboratory with different methods (25, 41). Specifically, large mammals are often preferentially preserved and recorded (39); therefore, they should have greater apparent durations. Despite the prediction of this preservation bias, we find that large mammals have on average shorter durations. However, taxonomic practices could have an influence in the opposite direction. For example, large mammal species might be preferentially described as new (e.g., more “splitters” among large mammal researchers), which could potentially bias large mammal durations toward being shorter. Unfortunately, no available data allow us to address such potential factors. We were, however, able to model body size as a covariate in preservation rate and found that its effect is inconsistent (Table 2). In cases where body size had an effect on preservation rate, the effect of body size on survivorship remained strong (Table 2). In other words, large mammals may have a somewhat higher preservation rate, but their survival probability is lower than that of small mammals even after accounting for differential preservation.

Why do our results differ from other mammalian body size turnover rate studies mentioned in the introduction? Muñoz-Durán (23) and Viranta (24) found no size bias in survivorship, but their studies involved only carnivores and these are all considered large mammals in our analyses; therefore, there is no direct contradiction (see SI Text for a discussion on carnivores). Van Valen (26) demonstrated that large mammal taxa have a longer half life than mammals in general in a semi-global genus dataset, but mammal taxonomy and chronology have improved over time. An independent lower latitude fossil mammal dataset from Miocene deposits in Pakistan, known as the Siwaliks (25, 41), also shows opposing results. The Siwaliks dataset has a broad taxonomic coverage, but a more limited temporal and geographic coverage. Also, differences in collecting strategies not taken into account could have played a part in opposite conclusions. A real biological signal may also be present: the Siwaliks assemblages represent a subtropical fauna and differ from NOW taxa, which were derived from a largely temperate fauna. The disadvantages of being a large mammal may not be felt under conditions of a more dependable (tropical or subtropical) environment. Consequently, the effects of a shorter generation time and species competition (42) as local small mammal diversity increases could lead to more rapid turnover of small mammals in the (sub)tropics (43).

Although shorter generation times and higher metabolic rates of small mammals may increase molecular rates of evolution (8, 11), and even if we were to assume that molecular changes translate substantially to phenotypic changes (12), these shorter-term, generational changes do not seem to translate to higher turnover rates as we have shown here (but see ref. 44). The study of evolutionary rates should therefore embrace different levels of the biological hierarchy. We emphasize that this discrepancy does not imply micro- and macroevolution discontinuity, but that using different observational scales and units reveals basal and emergent processes in turn.

Small mammals have on average lower turnover rates at both species and genus levels, even though noisier species data did not allow us to infer species level results with statistical confidence. We take this result one step further and present a hypothesis that to our knowledge has never been analyzed: it is not just being smaller per se that allows greater survivorship (many small mammals also have short species and genus durations) (Fig. 1 and Fig. S1). Rather, a greater proportion of small mammals may be more apt at hiding (e.g., in burrows or tree holes) or going into low metabolic rate modes (e.g., hibernation and torpor). We call such behavior “sleep-or-hide” (SLOH). Taxa that demonstrate the ability to buffer themselves from environmental stress in this manner are here termed SLOH taxa.

We used living species to infer the presence/absence of SLOH behavior in fossil genera. Of the 50 large NOW mammal genera for which we have the nearest living relative estimates, 15 exhibit SLOH behavior whereas, for 67 small NOW mammals genera (i.e., genera from the orders Insectivora, Lagomorpha, and Rodentia), 41 exhibit SLOH behavior (see Table S4 in Dataset S1). This bias is significant (χ2 test P = 0.0001).

More genera inferred to have SLOH behavior in our dataset have smaller body mass estimates (Fig. 3; Kolmogorov–Smirnov test P < 0.001). There is also a group of small mammals that does not display SLOH behavior (Fig. 3). Therefore, some, but not all, small mammals may be better buffered against environmental changes than larger mammals.

Fig. 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 3.

Histograms of ln body mass of SLOH (Upper) and non-SLOH (Lower) genera. N, sample size; m, mean ln body mass (in grams). See Fig. S3 for an alternative plot of this figure.

As discussed in more detail in SI Text, there is good evidence that the longest-lived small mammal genera have SLOH traits, as inferred from their nearest living relatives. Thus, for the most inclusive dataset (All) we find in the longest living 16-million year (M.y.) class a mole, two gliding squirrels, and two dormice. In the 15-M.y class, there is a shrew, a hedgehog, a ground squirrel, a hamster, and a burrowing field mouse. The 14-M.y class comprises two shrews, a mole, a gliding arboreal squirrel, and a burrowing mole rat. Apart from two eomyid rodents with unknown lifestyles, all genera in these highest range classes are likely to exhibit one or more SLOH traits. The sole large mammal in these duration classes is the tapir, genus Tapirus (extinct in the study area and therefore included in the analysis).

Body masses of large mammals increased over the Neogene (Fig. S2; see also ref. 45), and this temporal trend corresponds to a decrease in the ability to sleep and/or hide (Fig. S2). In contrast, there are no such trends over the Neogene for small mammals (Fig. S2). Incidentally, this body size constraint on SLOH behavior could explain an old paradox: the European Miocene–Pliocene boundary is well defined by a turnover event in the large mammal fauna but not that of small mammals (46).

We interpret the patterns in our data to indicate that the ability of a species or genus to shield itself from environmental fluctuations lowers turnover rates, and that the ability to “sleep-or-hide” is constrained by body size (47). We suggest that SLOH genera are less extinction prone and experience less selective pressure to evolve to cope with environmental change. Whether species are seasonal or facultative in the hibernation–torpor continuum (48), this behavior is associated with decreased food resources, lower ambient temperatures, and lowered oxygen availability (49). Because this behavior is in part plastic (48, 50⇓–52), species that display it are expected to cope better with (un)expected climate variation. It is typical for mammals to take shelter in burrows, holes, or caves, during hibernation or torpor, in part to maintain a more constant ambient environment. In fact, burrowing could have evolved as an adaptation to deteriorating conditions (53, 54), in combination with the exploitation of underground resources. In addition to providing a more constant ambient environment, such hiding places can also double as refuges from predators (17, 55, 56), including human hunters (21).

Climate and environment both have a large part to play in the evolutionary theater, even though the play must also depend on life-history and biotic interactions. Which taxa survive may be strongly influenced by the number and scale of climate reversals (57). However, in a similar environmental backdrop (Neogene of Europe), large mammals survive at lower rates than small mammals. Large mammals suffer from compound disadvantages. They have more deleterious mutations (37), smaller population sizes (31), and longer generation times (32) and are, in addition, probably constrained by their size from being apt at hiding or shutting down or lowering their metabolic rates temporarily. They may also require more energy to survive during periods of environmental stress (58, 59). However, we show that some small mammals are at an advantage because of “intrinsic traits,” in contrast to claims that small mammal extinctions are driven only by environmental factors (16). But it is not just bad news for large mammals: they enjoy higher origination rates, and therefore their overall diversity is maintained. Even though community energy use is independent of body size (60, 61), large and small mammals, with their different specific production rates and life styles (34), respond differently to the same general environment. Paleobiological analyses (this study), combined with analyses clarifying how life history affects evolutionary and ecological patterns (34) inform us with greater confidence which kinds of species are more vulnerable to climatic fluctuations and trends, not the least of which are seen in the current climate crisis.

Materials and Methods

Data.

The data we used are species occurrences of Neogene Old World land mammals from the NOW database (38) accessed on June 26, 2007. These data are based on published accounts of species occurrences at named sites (localities), vetted for taxonomic inconsistencies. We exclude localities east of 60°E, localities in Afro-Arabian countries, for the purpose of including only European Neogene localities for which we have greater confidence in both age estimates of localities and taxonomic identifications of samples. The occurrence data we used include specimens unidentified at the species level (i.e., with the suffixes sp., cf., and indet.), but any discussion of species results reflects only species that are fully identified. Our resulting dataset covers the longitudes 9.13°W to 58.9°E and latitudes 30.86°N to 55.0°N. Volant and marine mammals were excluded, but all trophic levels are represented.

Locality ages in the NOW database are recorded as minimum and maximum age estimates based on various combinations of direct dates (e.g., radiometric) and time units (62⇓⇓⇓–66). In our analyses, locality ages are the means of minimum and maximum age estimates. However, we remove all localities with maximum minus minimum ages greater than the duration of the MN-unit into which the mean age falls, according to the chronology of Steininger et al. (62).

We have used both the full dataset as described in the previous paragraphs (All) and various subsets of it in our analyses. In the subset 5_occ, we include only genera that appear at least five times in the data, in which case we lose some localities that are potentially taxon rich. Conversely, in 5_taxa, we exclude localities that have fewer than five genera. Therefore, some genera could have been removed from analyses simply by association with those poorer localities. Similarly, 10_occ_10_taxa is the data subset where, first, only genera that appear at least 10 times in the data are retained, and then those sites with at least 10 genera. We ran analogous analyses for species but do not present all results for economy and clarity.

Durations.

For the calculation and comparisons of untruncated taxon durations (in Fig. 1, Fig. S1, and Table 1), we used the following approach to remove potentially extant taxa in our fossil data. We first excluded taxa that appear at localities that are 0.5 M.y. old and younger and then further excluded taxa known to be living today (see SLOH) within the geographic bounds of the NOW data we are using. This is a highly conservative approach to removing extant or very recently extinct taxa. However, less conservative approaches (e.g., doing only the second sweep of exclusion) do not change results. Note that the analyses described in the next sections do not require any removal of extant taxa because one-side truncation of stratigraphic ranges is not a problem in rate calculations, as it is in duration calculations.

Per Capita Rates.

For each data subset, we tabulated whether a genus was recorded as present or absent during time bins that span 1, 1.5, or 2 M.y. These alternative binning schemes were done to check for the robustness of our results with respect to the variability in the uncertainty of locality ages. If a genus was absent during one or more time bins, but was present in some time bin before and after those absences, it was assumed to have survived those time intervals. We calculated per capita extinction (q) and origination (p) rates (67) for large and small mammals separately in each dataset, where Embedded Image and Nbt is the number of taxa that cross both the earlier (bottom) and the later (top) boundary of a time bin, Nt is the number of genera that cross only the later of the time bins, Nb the number that cross only the earlier boundary of the time bins, and Δt is the width of the time bins, following ref. 67. We use per capita rates, based on boundary crossers, because they are relatively insensitive to secular trends in the quality of preservation (67). Even though the observed first and last occurrences of taxa may be temporally quite far removed from the true time of origination and extinction, even in densely sampled datasets (68), there is a strong positive correlation between the ranks of observed ranges and estimates of true durations (see ref. 69).

CMR Estimates.

Capture-mark-recapture (CMR) methods have many powerful applications in ecology (70, 71) and are gradually finding their way into the paleobiological literature (70⇓–72). Our purpose of employing CMR methods is to estimate both survivorship and preservation probabilities with the aim of investigating the effect of body size on both probabilities. By using a CMR approach, we also control for differences in preservation among large and small mammals. We compared time-varying estimates of survival (Φ) and preservation (pr) probabilities with either no body size effect, or additive or multiplicative effects of body size using a model selection approach (73) (see SI Text for more details).

Body Size Groups.

Body size estimates for individual genera are not available for a substantial portion of fossil taxa in the NOW database. Therefore, we assigned to each genus one of two size classes, based on their taxonomic identity. All genera belonging to the orders Insectivora, Rodentia, and Lagomorpha are designated “small.” All remaining genera are regarded as “large,” namely Artiodactyla, Carnivora, Creodonta, Hyracoidea, Perissodactyla, Primates and Proboscidea, and Tubulidentata (74). In the absence of body size estimates for a large proportion of species in NOW, we justify our use of this coarse classification as follows. Bimodality in the body size distribution of mammals (26, 75, 76) has existed and intensified since the Eocene (45, 77). Moreover, body sizes are constrained by phylogeny with mammalian taxa having characteristic sizes over both space and time (78, 79). In addition, we used a nearest living relative approach to estimate mean body masses for the genera in the NOW database where possible (see next section for details).

SLOH.

We used MammalBase, a database of living mammal attributes, based on refs. 80⇓⇓–83, compiled by one of us (K.L.), to extract SLOH information on extant species. SLOH attributes for genera used in this article are attached in Table S4 in Dataset S1 but further information is available on request. We coded all known extant species for SLOH behavior according to whether they (i) are hibernators, (ii) go into torpor, (iii) can be dormant, (iv) can go into aestivation mode, (v) make or use burrows or are fossorial, (vi) make or use tunnels or chambers, (vii) live in tree holes, or (viii) are cave dwellers. If one of these eight nonmutually exclusive traits is present for a given species, we coded it as 1 for its SLOH value and 0 if none was observed (Table S4 in Dataset S1). However, for data analyses, we treated the absence of mention of these traits as zeros instead of “NA” as coded, because of the common practice of not noting absent traits. If a NOW genus has any living species for which any one of the SLOH attributes is tabulated as present, we assign a SLOH value of “1” to that NOW genus and therefore to all of the NOW species that are members of the genus (nearest living relative approach). Additionally, one of us (L.F.) manually checked the entries described above and presented in Table S4 in Dataset S1, to ensure the quality of the data. L.F. provided alternative coding, and we show results based on amended assignments in Table S4 in Dataset S1. These amendments, however, do not change our qualitative results or general conclusions.

Body Mass Estimates.

With reference to the previous sections, for NOW genera with living species for which body masses are known from MammalBase, we similarly calculated the mean body mass from these living species and used these as mean body mass estimates for these genera. To supplement body mass data from MammalBase, we used body mass data compiled by two National Center for Ecological Analysis and Synthesis (NCEAS) working groups (ref. 84 and J. Damuth, personal communication).

Acknowledgments

We thank Torbjørn Ergon, Jon Olav Vik, and Jim Nichols for technical advice and John Damuth for sharing unpublished data. Two anonymous reviewers offered valuable suggestions that improved the paper. This research is in part funded by an Academy of Finland grant (to M.F.) and core funding to the Center for Ecological & Evolutionary Synthesis.

Footnotes

  • ↵**To whom correspondence should be addressed. E-mail: n.c.stenseth{at}bio.uio.no
  • Author contributions: L.H.L., M.F., H.M., and N.C.S. designed research; L.H.L., M.F., E.B., K.L., and L.F. performed research; L.H.L., E.B., K.L., H.M., and L.F. analyzed data; and L.H.L., M.F., L.F., and N.C.S. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/cgi/content/full/0709763105/DCSupplemental.

  • Received October 14, 2007.
  • © 2008 by The National Academy of Sciences of the USA

References

  1. ↵
    1. Jablonski D
    (2007) Scale and hierarchy in macroevolution. Palaeontology 50:87–109.
    .
    OpenUrlCrossRef
  2. ↵
    1. Peters RH
    (1983) The Ecological Implications of Body Size (Cambridge Univ Press, Cambridge, UK).
    .
  3. ↵
    1. Li W-H,
    2. Gouy M,
    3. Sharp PM,
    4. O'hUigin C,
    5. Yang Y-W
    (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci USA 87:6703–6707.
    .
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Martin AP,
    2. Palumbi SR
    (1993) Body size, metabolic-rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091.
    .
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Bromham L,
    2. Rambaut A,
    3. Harvey PH
    (1996) Determinants of rate variation in mammalian DNA sequence evolution. J Mol Evol 43:610–621.
    .
    OpenUrlCrossRefPubMed
  6. ↵
    1. Li WH,
    2. Ellsworth DL,
    3. Krushkal J,
    4. Chang BHJ,
    5. Hewett-Emmett D
    (1996) Rates of nucleotide substitution in primates and rodents and the generation time effect hypothesis. Mol Phylogenet Evol 5:182–187.
    .
    OpenUrlCrossRefPubMed
  7. ↵
    1. Rowe DL,
    2. Honeycutt RL
    (2002) Phylogenetic relationships, ecological correlates, and molecular evolution within the Cavioidea (Mammalia, Rodentia). Mol Biol Evol 19:263–277.
    .
    OpenUrlCrossRefPubMed
  8. ↵
    1. Gillooly JF,
    2. Allen AP,
    3. West GB,
    4. Brown JH
    (2005) The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc Natl Acad Sci USA 102:140–145.
    .
    OpenUrlAbstract/FREE Full Text
    1. Omland KE
    (1997) Correlated rates of molecular and morphological evolution. Evolution 51:1381–1393.
    .
    OpenUrlCrossRef
    1. Davies TJ,
    2. Savolainen V,
    3. Chase MW,
    4. Moat J,
    5. Barraclough TG
    (2004) Environmental energy and evolutionary rates in flowering plants. Proc Biol Sci 271:2195–2200.
    .
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Bromham L,
    2. Woolfit M,
    3. Lee MSY,
    4. Rambaut A
    (2002) Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution 56:1921–1930.
    .
    OpenUrlCrossRefPubMed
  10. ↵
    1. Bromham L
    (2003) Molecular clocks and explosive radiations. J Mol Evol 57(Suppl 1):S13–S20.
    .
    OpenUrlCrossRefPubMed
  11. ↵
    1. McKinney ML
    (1997) Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516.
    .
    OpenUrlCrossRef
  12. ↵
    1. Harcourt AH,
    2. Schwartz MW
    (2001) Primate evolution: A biology of Holocene extinction and survival on the southeast Asian Sunda Shelf islands. Am J Phys Anthropol 114:4–17.
    .
    OpenUrlPubMed
  13. ↵
    1. Cardillo M
    (2003) Biological determinants of extinction risk: Why are smaller species less vulnerable? Anim Conserv 6:63–69.
    .
    OpenUrlCrossRef
  14. ↵
    1. Cardillo M,
    2. et al.
    (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241.
    .
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. McKenzie NL,
    2. et al.
    (2007) Analysis of factors implicated in the recent decline of Australia's mammal fauna. J Biogeogr 34:597–611.
    .
    OpenUrlCrossRef
  16. ↵
    1. Koch PL,
    2. Barnosky AD
    (2006) Late quaternary extinctions: State of the debate. Annu Rev Ecol Evol Syst 37:215–250.
    .
    OpenUrlCrossRef
  17. ↵
    1. Lyons SK,
    2. Smith FA,
    3. Brown JH
    (2004) Of mice, mastodons and men: Human-mediated extinctions on four continents. Evol Ecol Res 6:339–358.
    .
    OpenUrl
  18. ↵
    1. Purvis A,
    2. Gittleman JL,
    3. Cowlishaw G,
    4. Mace GM
    (2000) Predicting extinction risk in declining species. Proc R Soc London Ser B Biol Sci 267:1947–1952.
    .
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Johnson CN
    (2002) Determinants of loss of mammal species during the Late Quaternary “megafauna” extinctions: Life history and ecology, but not body size. Proc R Soc London Ser B Biol Sci 269:2221–2227.
    .
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Brashares JS
    (2003) Ecological, behavioral, and life-history correlates of mammal extinctions in West Africa. Conserv Biol 17:733–743.
    .
    OpenUrlCrossRef
  21. ↵
    1. Muñoz-Durán J
    (2002) Correlates of speciation and extinction rates in the Carnivora. Evol Ecol Res 4:963–991.
    .
    OpenUrl
  22. ↵
    1. Viranta S
    (2003) Geographic and temporal ranges of Middle and Late Miocene carnivores. J Mammal 84:1267–1278.
    .
    OpenUrlCrossRef
  23. ↵
    1. Flynn LJ,
    2. et al.
    (1995) Neogene Siwalik mammalian lineages: Species longevities, rates of change, and modes of speciation. Palaeogeogr Palaeoclimatol Palaeoecol 115:249–264.
    .
    OpenUrlCrossRef
  24. ↵
    1. Van Valen L
    (1975) Group selection, sex and fossils. Evolution 29:87–94.
    .
    OpenUrlCrossRef
  25. ↵
    1. Van Valkenburgh B,
    2. Wang XM,
    3. Damuth J
    (2004) Cope's rule, hypercarnivory, and extinction in North American canids. Science 306:101–104.
    .
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. McLain DK
    (1993) Cope's rules, sexual selection, and the loss of ecological plasticity. Oikos 68:490–500.
    .
    OpenUrlCrossRef
  27. ↵
    1. Brown JH,
    2. Stevens GC,
    3. Kaufman DM
    (1996) The geographic range: Size, shape, boundaries, and internal structure. Annu Rev Ecol Syst 27:597–623.
    .
    OpenUrlCrossRef
  28. ↵
    1. Biedermann R
    (2003) Body size and area-incidence relationships: Is there a general pattern? Global Ecol Biogeogr 12:381–387.
    .
    OpenUrlCrossRef
  29. ↵
    1. Blackburn TM,
    2. Gaston KJ
    (1999) The relationship between animal abundance and body size: A review of the mechanisms. Adv Ecol Res 28:181–210.
    .
    OpenUrlCrossRef
  30. ↵
    1. Brook BW,
    2. Bowman D
    (2005) One equation fits overkill: Why allometry underpins both prehistoric and modern body size-biased extinctions. Popul Ecol 47:137.
    .
    OpenUrlCrossRef
  31. ↵
    1. Brown JH,
    2. Sibly RM
    (2006) Life-history evolution under a production constraint. Proc Natl Acad Sci USA 103:17595–17599.
    .
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Sibly RM,
    2. Brown JH
    (2007) Effects of body size and lifestyle on evolution of mammal life histories. Proc Natl Acad Sci USA 104:17707–17712.
    .
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Symonds MRE
    (1999) Life histories of the Insectivora: The role of phylogeny, metabolism and sex differences. J Zool 249:315–337.
    .
    OpenUrlCrossRef
  34. ↵
    1. Stanley SM
    (1979) Macroevolution: Pattern and Process (John Hopkins Univ Press, Baltimore).
    .
  35. ↵
    1. Popadin K,
    2. Polishchuk LV,
    3. Mamirova L,
    4. Knorre D,
    5. Gunbin K
    (2007) Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. Proc Natl Acad Sci USA 104:13390–13395.
    .
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Fortelius M
    (2008) Neogene of the Old World Database of Fossil Mammals (NOW) (University of Helsinki, Helsinki).
    .
  37. ↵
    1. Muñoz-Durán J,
    2. Van Valkenburgh B
    (2006) The Rancholabrean record of carnivora: Taphonomic effect of body size, habitat breadth, and the preservation potential of caves. Palaios 21:424–430.
    .
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Badgley C
    (1986) Taphonomy of mammalian fossil remains from Siwalik rocks of Pakistan. Paleobiology 12:119–142.
    .
    OpenUrlAbstract
  39. ↵
    1. Barry J,
    2. et al.
    (2002) Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28:1–71, (Memoir 3, Suppl to Number 2).
    .
    OpenUrlFREE Full Text
  40. ↵
    1. Stenseth NC,
    2. Maynard Smith J
    (1984) Coevolution in ecosystems: Red Queen evolution or stasis. Evolution 38:870–880.
    .
    OpenUrlCrossRef
  41. ↵
    1. Stenseth NC
    (1984) The tropics: Cradle or museum. Oikos 43:417–420.
    .
    OpenUrlCrossRef
  42. ↵
    1. Allen AP,
    2. Gillooly JF,
    3. Savage VM,
    4. Brown JH
    (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci USA 103:9130–9135.
    .
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Alroy J
    (1998) Cope's rule and the dynamics of body mass evolution in North American mammals. Science 280:731–734.
    .
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Agustí J,
    2. et al.
    (2001) A calibrated mammal scale for the Neogene of Western Europe: State of the art. Earth Sci Rev 52:247–260.
    .
    OpenUrl
  45. ↵
    1. Geiser F
    (1998) Evolution of daily torpor and hibernation in birds and mammals: Importance of body size. Clin Exp Pharmacol Physiol 25:736–740.
    .
    OpenUrlCrossRefPubMed
  46. ↵
    1. Lehmer EM,
    2. Savage LT,
    3. Antolin MF,
    4. Biggins DE
    (2006) Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs. Physiol Biochem Zool 79:454–467.
    .
    OpenUrlCrossRefPubMed
  47. ↵
    1. Ramirez JM,
    2. Folkow LP,
    3. Blix AS
    (2007) Hypoxia tolerance in mammals and birds: From the wilderness to the clinic. Annu Rev Physiol 69:113–143.
    .
    OpenUrlCrossRefPubMed
  48. ↵
    1. Lovegrove BG,
    2. Lawes MJ,
    3. Roxburgh L
    (1999) Confirmation of pleisiomorphic daily torpor in mammals: The round-eared elephant shrew Macroscelides proboscideus (Macroscelidea). J Comp Physiol B Biochem Syst Environ Physiol 169:453–460.
    .
    OpenUrlCrossRefPubMed
  49. ↵
    1. Kawamichi M
    (1996) Ecological factors affecting annual variation in commencement of hibernation in wild chipmunks (Tamias sibiricus). J Mammal 77:731–744.
    .
    OpenUrlCrossRef
  50. ↵
    1. Nicol S,
    2. Andersen NA
    (2002) The timing of hibernation in Tasmanian echidnas: Why do they do it when they do? Comp Biochem Physiol B Biochem Mol Biol 131:603–611.
    .
    OpenUrlCrossRefPubMed
  51. ↵
    1. Voorhies MR
    (1975) Vertebrate burrows. The Study of Trace Fossils (Springer, New York), pp 325–350.
    .
  52. ↵
    1. Humphries MM,
    2. Kramer DL,
    3. Thomas DW
    (2003) The role of energy availability in mammalian hibernation: An experimental test in free-ranging eastern chipmunks. Physiol Biochem Zool 76:180–186.
    .
    OpenUrlCrossRefPubMed
  53. ↵
    1. Smith AP,
    2. Quin DG
    (1996) Patterns and causes of extinction and decline in Australian conilurine rodents. Biol Conserv 77:243–267.
    .
    OpenUrlCrossRef
  54. ↵
    1. Vermeij GJ
    (1987) Evolution and Escalation: An Ecological History of Life (Princeton Univ Press, Princeton).
    .
  55. ↵
    1. Bown TM,
    2. Holroyd PA,
    3. Rose KD
    (1994) Mammal extinctions, body-size, and paleotemperature. Proc Natl Acad Sci USA 91:10403–10406.
    .
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Schmidt-Nielsen K
    (1984) Scaling: Why is Animal Size So Important? (Cambridge Univ Press, Cambridge, UK).
    .
  57. ↵
    1. Holliday R
    (2005) Ageing and the extinction of large animals. Biogerontology 6:151–156.
    .
    OpenUrlCrossRefPubMed
  58. ↵
    1. Damuth J
    (1981) Population-density and body size in mammals. Nature 290:699–700.
    .
    OpenUrlCrossRef
  59. ↵
    1. Damuth J
    (2007) A macroevolutionary explanation for energy equivalence in the scaling of body size and population density. Am Nat 169:621–631.
    .
    OpenUrlCrossRefPubMed
  60. ↵
    1. Steininger FF,
    2. et al.
    , ed (1996) Circum-Mediterranean Neogene (Miocene-Pliocene) Marine-Continental Chronologic Correlations of European Mammal Units (Columbia Univ Press, New York), pp 7–46.
    .
  61. ↵
    1. Bernor RL,
    2. Fahlbusch V,
    3. Mittmann H-W
    1. Fortelius M,
    2. et al.
    (1996) Provinciality, diversity, turnover, and paleoecology in land mammal faunas of the Later Miocene of Western Eurasia. The Evolution of Western Eurasian Neogene Mammal Faunas, eds Bernor RL, Fahlbusch V, Mittmann H-W (Columbia Univ Press, New York), pp 414–448.
    .
  62. ↵
    1. Mein P
    (1975) Proposition de biozonation du Néogène méditerra néen a partir des mammifères. Trabajos Sobre Neogeno Cuaternario 4:112–113.
    .
    OpenUrl
  63. ↵
    1. Lindsay EH,
    2. Fahlbusch V,
    3. Mein P
    1. Mein P
    (1989) Updating of MN zones. European Neogene Mammal Chronology, eds Lindsay EH, Fahlbusch V, Mein P (Plenum, New York), pp 73–90.
    .
  64. ↵
    1. Fahlbusch V
    (1991) The meaning of MN-zonation: Considerations for a subdivision of the European continental Tertiary using mammals. Newsletters Stratigr 24:159–173.
    .
    OpenUrl
  65. ↵
    1. Foote M
    (2000) Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74–102.
    .
    OpenUrlCrossRef
  66. ↵
    1. Liow LH,
    2. Stenseth NC
    (2007) The rise and fall of species: Implications for macroevolutionary and macroecological studies. Proc Biol Sci 274:2745–2752.
    .
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Liow LH
    (2007) Lineages with long durations are old and morphologically average: An analysis using multiple datasets. Evolution 61:885–901.
    .
    OpenUrlCrossRefPubMed
  68. ↵
    1. Nichols JD,
    2. Morris RW,
    3. Brownie C,
    4. Pollock KH
    (1986) Sources of variation in extinction rates, turnover, and diversity of marine invertebrate families during the Paleozoic. Paleobiology 12:421–432.
    .
    OpenUrlAbstract
  69. ↵
    1. Connolly SR,
    2. Miller AI
    (2001) Joint estimation of sampling and turnover rates from fossil databases: Capture-mark-recapture methods revisited. Paleobiology 27:751–767.
    .
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Kroger B
    (2005) Adaptive evolution in Paleozoic coiled cephalopods. Paleobiology 31:253–268.
    .
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Burnham KP,
    2. Anderson DK
    (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York), 2nd Ed.
    .
  72. ↵
    1. Heikinheimo H,
    2. Fortelius M,
    3. Eronen J,
    4. Mannila H
    (2007) Biogeography of European land mammals shows environmentally distinct and spatially coherent clusters. J Biogeogr 34:1053–1064.
    .
    OpenUrlCrossRef
  73. ↵
    1. Lovegrove BG,
    2. Haines L
    (2004) The evolution of placental mammal body sizes: Evolutionary history, form, and function. Oecologia 138:13–27.
    .
    OpenUrlCrossRefPubMed
  74. ↵
    1. Morgan ME,
    2. et al.
    (1995) Comparative paleoecology of Paleogene and Neogene mam-malian faunas: Body-size structure. Palaeogeogr Palaeoclimatol Palaeoecol 115:287–317.
    .
    OpenUrlCrossRef
  75. ↵
    1. Alroy J
    (2003) Taxonomic inflation and body mass distributions in North American fossil mammals. J Mammal 84:431–443.
    .
    OpenUrlCrossRef
  76. ↵
    1. Smith FA,
    2. et al.
    (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am Nat 163:672–691.
    .
    OpenUrlCrossRefPubMed
  77. ↵
    1. Siemann E,
    2. Brown JH
    (1999) Gaps in mammalian body size distributions reexamined. Ecology 80:2788–2792.
    .
    OpenUrlCrossRef
  78. ↵
    1. Wilson DE,
    2. Reeder DM
    , eds (2005) Mammal Species of the World (Johns Hopkins Univ Press, Baltimore).
    .
  79. ↵
    1. Myers P,
    2. et al.
    (2007) The Animal Diversity Web (Univ of Michigan, Ann Arbor) http://animaldiversity.org. accessed May 27, 2007.
    .
  80. ↵
    1. Nowak RM
    (1991) Walker's Mammals of the World (Johns Hopkins Univ Press, Baltimore), 5th Ed.
    .
  81. ↵
    1. Wilson DE,
    2. Ruff S
    (1999) The Smithsonian Book of North American Mammals (Smithsonian Institution Press, Washington, DC).
    .
  82. ↵
    1. Smith F
    (2007) Maecroecological Database of Mammalian Body Mass (Knowledge Network for Biocomplexity Data Registry) (National Center for Ecological Analysis and Synthesis, Santa Barbara, CA) http://knbecoinformatics.org/knb/metacat/nceas.196.3/nceas. accessed August 31, 2007.
    .
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Higher origination and extinction rates in larger mammals
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Higher origination and extinction rates in larger mammals
Lee Hsiang Liow, Mikael Fortelius, Ella Bingham, Kari Lintulaakso, Heikki Mannila, Larry Flynn, Nils Chr. Stenseth
Proceedings of the National Academy of Sciences Apr 2008, 105 (16) 6097-6102; DOI: 10.1073/pnas.0709763105

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Higher origination and extinction rates in larger mammals
Lee Hsiang Liow, Mikael Fortelius, Ella Bingham, Kari Lintulaakso, Heikki Mannila, Larry Flynn, Nils Chr. Stenseth
Proceedings of the National Academy of Sciences Apr 2008, 105 (16) 6097-6102; DOI: 10.1073/pnas.0709763105
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Evolution
Proceedings of the National Academy of Sciences: 105 (16)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490