Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells

Ryan Whitford, Ana Fernandez, Ruth De Groodt, Esther Ortega, and Pierre Hilson
PNAS November 25, 2008 105 (47) 18625-18630; https://doi.org/10.1073/pnas.0809395105
Ryan Whitford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ana Fernandez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruth De Groodt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Esther Ortega
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Hilson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pierre.hilson@psb.ugent.be
  1. Communicated by Marc C. E. Van Montagu, Ghent University, Ghent, Belgium, September 20, 2008 (received for review October 17, 2007)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

The Clavata3 (CLV3)/endosperm surrounding region (CLE) signaling peptides are encoded in large plant gene families. CLV3 and the other A-type CLE peptides promote cell differentiation in root and shoot apical meristems, whereas the B-type peptides (CLE41–CLE44) do not. Instead, CLE41 inhibits the differentiation of Zinnia elegans tracheary elements. To test whether CLE genes might code for antagonistic or synergistic functions, peptides from both types were combined through overexpression within or application onto Arabidopsis thaliana seedlings. The CLE41 peptide (CLE41p) promoted proliferation of vascular cells, although delaying differentiation into phloem and xylem cell lineages. Application of CLE41p or overexpression of CLE41 did not suppress the terminal differentiation of the root and shoot apices triggered by A-type CLE peptides. However, in combination, A-type peptides enhanced all of the phenotypes associated with CLE41 gain-of-function, leading to massive proliferation of vascular cells. This proliferation relied on auxin signaling because it was enhanced by exogenous application of a synthetic auxin, decreased by an auxin polar transport inhibitor, and abolished by a mutation in the Monopteros auxin response factor. These findings highlight that vascular patterning is a process controlled in time and space by different CLE peptides in conjunction with hormonal signaling.

  • cambium
  • hypocotyl
  • RAM
  • SAM
  • TDIF

Footnotes

  • 2To whom correspondence should be addressed. E-mail: pierre.hilson{at}psb.ugent.be
  • Author contributions: R.W., A.F., and P.H. designed research; R.W., A.F., R.D.G., and E.O. performed research; R.W., A.F., R.D.G., E.O., and P.H. analyzed data; and R.W. and P.H. wrote the paper.

  • ↵1Present address: Centro de Investigación del Cáncer, Universidad de Salamanca, Consejo Superior de Investigaciones Cientificas, E-37007 Salamanca, Spain.

  • The authors declare no conflict of interest.

  • This article contains supporting information online at www.pnas.org/cgi/content/full/0809395105/DCSupplemental.

  • © 2008 by The National Academy of Sciences of the USA
View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells
Ryan Whitford, Ana Fernandez, Ruth De Groodt, Esther Ortega, Pierre Hilson
Proceedings of the National Academy of Sciences Nov 2008, 105 (47) 18625-18630; DOI: 10.1073/pnas.0809395105

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells
Ryan Whitford, Ana Fernandez, Ruth De Groodt, Esther Ortega, Pierre Hilson
Proceedings of the National Academy of Sciences Nov 2008, 105 (47) 18625-18630; DOI: 10.1073/pnas.0809395105
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (50)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Note Added in Proof.
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Modulating the body's networks could become mainstream therapy for many health issues. Image credit: The Feinstein Institutes for Medicine Research.
Core Concept: The rise of bioelectric medicine sparks interest among researchers, patients, and industry
Modulating the body's networks could become mainstream therapy for many health issues.
Image credit: The Feinstein Institutes for Medicine Research.
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans. Image courtesy of Pixabay/Skeeze.
Human heart evolved for endurance
Adaptations in heart structure and function likely enabled endurance and survival in preindustrial humans.
Image courtesy of Pixabay/Skeeze.
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation. Image courtesy of Jesse D. Acosta.
Viscoelastic fluids and wildfire prevention
Viscoelastic carrier fluids enhance retention of fire retardants on wildfire-prone vegetation.
Image courtesy of Jesse D. Acosta.
Water requirements may make desert bird declines more likely in a warming climate. Image courtesy of Sean Peterson (photographer).
Climate change and desert bird collapse
Water requirements may make desert bird declines more likely in a warming climate.
Image courtesy of Sean Peterson (photographer).
QnAs with NAS member and plant biologist Sheng Yang He. Image courtesy of Sheng Yang He.
Featured QnAs
QnAs with NAS member and plant biologist Sheng Yang He
Image courtesy of Sheng Yang He.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490