Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Megafauna biomass tradeoff as a driver of Quaternary and future extinctions

Anthony D. Barnosky
  1. Department of Integrative Biology and Museums of Paleontology and Vertebrate Zoology, University of California, Berkeley, CA 94720

See allHide authors and affiliations

PNAS August 12, 2008 105 (Supplement 1) 11543-11548; https://doi.org/10.1073/pnas.0801918105
Anthony D. Barnosky
Department of Integrative Biology and Museums of Paleontology and Vertebrate Zoology, University of California, Berkeley, CA 94720
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: barnosky@berkeley.edu
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Earth's most recent major extinction episode, the Quaternary Megafauna Extinction, claimed two-thirds of mammal genera and one-half of species that weighed >44 kg between ≈50,000 and 3,000 years ago. Estimates of megafauna biomass (including humans as a megafauna species) for before, during, and after the extinction episode suggest that growth of human biomass largely matched the loss of non-human megafauna biomass until ≈12,000 years ago. Then, total megafauna biomass crashed, because many non-human megafauna species suddenly disappeared, whereas human biomass continued to rise. After the crash, the global ecosystem gradually recovered into a new state where megafauna biomass was concentrated around one species, humans, instead of being distributed across many species. Precrash biomass levels were finally reached just before the Industrial Revolution began, then skyrocketed above the precrash baseline as humans augmented the energy available to the global ecosystem by mining fossil fuels. Implications include (i) an increase in human biomass (with attendant hunting and other impacts) intersected with climate change to cause the Quaternary Megafauna Extinction and an ecological threshold event, after which humans became dominant in the global ecosystem; (ii) with continued growth of human biomass and today's unprecedented global warming, only extraordinary and stepped-up conservation efforts will prevent a new round of extinctions in most body-size and taxonomic spectra; and (iii) a near-future biomass crash that will unfavorably impact humans and their domesticates and other species is unavoidable unless alternative energy sources are developed to replace dwindling supplies of fossil fuels.

  • paleoecology
  • pleistocene
  • mammal
  • ecological threshold

Footnotes

  • ↵*To whom correspondence should be addressed. E-mail: barnosky{at}berkeley.edu
  • Author contributions: A.D.B. designed research, performed research, analyzed data, and wrote the paper.

  • This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, “In the Light of Evolution II: Biodiversity and Extinction,” held December 6–8, 2007, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. The complete program and audio files of most presentations are available on the NAS web site at www.nasonline.org/Sackler_biodiversity.

  • The author declares no conflict of interest.

  • © 2008 by The National Academy of Sciences of the USA
View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Megafauna biomass tradeoff as a driver of Quaternary and future extinctions
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Megafauna biomass tradeoff as a driver of Quaternary and future extinctions
Anthony D. Barnosky
Proceedings of the National Academy of Sciences Aug 2008, 105 (Supplement 1) 11543-11548; DOI: 10.1073/pnas.0801918105

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Megafauna biomass tradeoff as a driver of Quaternary and future extinctions
Anthony D. Barnosky
Proceedings of the National Academy of Sciences Aug 2008, 105 (Supplement 1) 11543-11548; DOI: 10.1073/pnas.0801918105
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 105 (Supplement 1)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Conclusions
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490