Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Articles

Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks

Ian S. Pearse and Andrew L. Hipp
PNAS October 27, 2009 106 (43) 18097-18102; https://doi.org/10.1073/pnas.0904867106
Ian S. Pearse
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ispearse@ucdavis.edu
Andrew L. Hipp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Anurag A. Agrawal, Cornell University, Ithaca, NY, and accepted by the Editorial Board September 3, 2009 (received for review May 2, 2009)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Introduced plants tend to experience less herbivory than natives, although herbivore loads vary widely. Herbivores may switch hosts onto an introduced plant for at least two reasons. They may recognize the novel plant as a potential host based on similarity of the plant's traits to the traits of one of its native hosts, a similarity that may or may not exhibit phylogenetic signal. Alternatively, herbivores may feed optimally, assessing which introduced plants provide the best nutrition irrespective of similarity to native species. Here, we created a phylogeny of 57 oak (Quercus) taxa, which were grown outside of their ranges in a common botanical garden that contained one abundant native oak (Quercus lobata). We used the phylogeny to estimate the phylogenetic conservatism of herbivory by two feeding guilds of insects (leaf chewers and leaf miners) and 11 plant traits expected to affect herbivore performance. We found high phylogenetic signal in chewing damage but not mining damage and all traits except for leaf maturation time. Introduced oaks that are more closely related to the native oak received more chewing and mining damage than distantly related oaks, and introduced oaks that had greater overall similarity in leaf traits also received higher chewing damage but not mining damage. These results demonstrate that interactions between introduced plants and their herbivores are driven independently by traits that track plant phylogeny and leaf traits that likely affect herbivore performance.

  • community phylogeny
  • enemy release
  • introduced
  • plant defense
  • Quercus

Footnotes

  • 1To whom correspondence should be addressed. E-mail: ispearse{at}ucdavis.edu
  • Author contributions: I.S.P. designed research; I.S.P. performed research; A.L.H. contributed new reagents/analytic tools; I.S.P. and A.L.H. analyzed data; and I.S.P. and A.L.H. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission. A.A.A. is a guest editor invited by the Editorial Board.

  • Data deposition: The data matrix and AFLP phylogeny have been deposited in TreeBase, www.treebase.org (study accession no. S2405; matrix accession no. M4552).

  • This article contains supporting information online at www.pnas.org/cgi/content/full/0904867106/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks
Ian S. Pearse, Andrew L. Hipp
Proceedings of the National Academy of Sciences Oct 2009, 106 (43) 18097-18102; DOI: 10.1073/pnas.0904867106

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks
Ian S. Pearse, Andrew L. Hipp
Proceedings of the National Academy of Sciences Oct 2009, 106 (43) 18097-18102; DOI: 10.1073/pnas.0904867106
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 106 (43)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Evolution

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490