New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Basic mechanism for abrupt monsoon transitions
-
Edited by Hans Joachim Schellnhuber, Potsdam Institute for Climate Impact Research, Potsdam, Germany and approved August 18, 2009 (received for review February 11, 2009)
This article has a Letter. Please see:
See related content:
- Linear monsoon scaling- Apr 18, 2016

Abstract
Monsoon systems influence the livelihood of hundreds of millions of people. During the Holocene and last glacial period, rainfall in India and China has undergone strong and abrupt changes. Though details of monsoon circulations are complicated, observations reveal a defining moisture-advection feedback that dominates the seasonal heat balance and might act as an internal amplifier, leading to abrupt changes in response to relatively weak external perturbations. Here we present a minimal conceptual model capturing this positive feedback. The basic equations, motivated by observed relations, yield a threshold behavior, robust with respect to addition of other physical processes. Below this threshold in net radiative influx, R c, no conventional monsoon can develop; above R c, two stable regimes exist. We identify a nondimensional parameter l that defines the threshold and makes monsoon systems comparable with respect to the character of their abrupt transition. This dynamic similitude may be helpful in understanding past and future variations in monsoon circulation. Within the restrictions of the model, we compute R c for current monsoon systems in India, China, the Bay of Bengal, West Africa, North America, and Australia, where moisture advection is the main driver of the circulation.
Footnotes
- 1To whom correspondence should be addressed. E-mail: anders.levermann{at}pik-potsdam.de
-
Author contributions: A.L. designed research; A.L. and V.P. performed research; A.L., J.S., and H.H. analyzed data; and A.L. wrote the paper.
-
The authors declare no conflict of interest.
-
This article is a PNAS Direct Submission.
-
This article contains supporting information online at www.pnas.org/cgi/content/full/0901414106/DCSupplemental.
- Received February 11, 2009.
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Physical Sciences
- Geophysics