Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict

Cheng Deng, C.-H. Christina Cheng, Hua Ye, Ximiao He, and Liangbiao Chen
  1. aKey Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
  2. bGraduate College of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; and
  3. cDepartment of Animal Biology, University of Illinois, Urbana, IL 61801

See allHide authors and affiliations

PNAS December 14, 2010 107 (50) 21593-21598; https://doi.org/10.1073/pnas.1007883107
Cheng Deng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.-H. Christina Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lbchen@genetics.ac.cn c-cheng@uiuc.edu
Hua Ye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ximiao He
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liangbiao Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lbchen@genetics.ac.cn c-cheng@uiuc.edu
  1. Edited by Sean B. Carroll, University of Wisconsin, Madison, WI, and approved November 2, 2010 (received for review June 5, 2010)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Online Impact

 

Article Information

vol. 107 no. 50 21593-21598
DOI: 
https://doi.org/10.1073/pnas.1007883107
PubMed: 
21115821

Published By: 
National Academy of Sciences
Print ISSN: 
0027-8424
Online ISSN: 
1091-6490
History: 
  • Published in issue December 14, 2010.
  • Published first November 29, 2010.


Author Information

  1. Cheng Denga,b,
  2. C.-H. Christina Chengc,1,
  3. Hua Yea,b,
  4. Ximiao Heb, and
  5. Liangbiao Chena,1
  1. aKey Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
  2. bGraduate College of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China; and
  3. cDepartment of Animal Biology, University of Illinois, Urbana, IL 61801
  1. Edited by Sean B. Carroll, University of Wisconsin, Madison, WI, and approved November 2, 2010 (received for review June 5, 2010)

Footnotes

  • 1To whom correspondence may be addressed. E-mail: lbchen{at}genetics.ac.cn or c-cheng{at}uiuc.edu.
  • Author contributions: C.-H.C.C. and L.C. designed research; C.D. performed research; C.D., H.Y., X.H., and L.C. analyzed data; and C.-H.C.C. and L.C. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • Data deposition: The sequences reported in this paper have been deposited in the GenBank database (LdBAC002 accession no. GQ368892, LdBAC008 accession no. GQ368894, and LdBAC004 accession no. GQ368893).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1007883107/-/DCSupplemental.

Cited By...

  • 57 Citations
  • 65 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Whole-genome duplication in teleost fishes and its evolutionary consequences
    Stella M. K. Glasauer, Stephan C. F. Neuhauss
    Molecular Genetics and Genomics 2014 289 6
  • Molecular basis and genetic improvement of economically important traits in aquaculture animals
    JianFang Gui, ZuoYan Zhu
    Chinese Science Bulletin 2012 57 15
  • New Gene Evolution: Little Did We Know
    Manyuan Long, Nicholas W. VanKuren, Sidi Chen, Maria D. Vibranovski
    Annual Review of Genetics 2013 47 1
  • Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication
    Karin Voordeckers, Chris A. Brown, Kevin Vanneste, Elisa van der Zande, Arnout Voet, Steven Maere, Kevin J. Verstrepen, Joseph W. Thornton
    PLoS Biology 2012 10 12
  • Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins
    Adam D. Hargreaves, Martin T. Swain, Matthew J. Hegarty, Darren W. Logan, John F. Mulley
    Genome Biology and Evolution 2014 6 8
  • Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses
    Alex C. C. Wilson, Rebecca P. Duncan
    Proceedings of the National Academy of Sciences 2015 112 33
  • Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
    R. Huang, F. Hippauf, D. Rohrbeck, M. Haustein, K. Wenke, J. Feike, N. Sorrelle, B. Piechulla, T. J. Barkman
    Proceedings of the National Academy of Sciences 2012 109 8
  • Polyploidy and Genome Evolution
    Ingo Braasch, John H. Postlethwait
    2012
  • How will fish that evolved at constant sub-zero temperatures cope with global warming? Notothenioids as a case study
    Tomaso Patarnello, Cinzia Verde, Guido di Prisco, Luca Bargelloni, Lorenzo Zane
    BioEssays 2011 33 4
  • Helical Antifreeze Proteins Have Independently Evolved in Fishes on Four Occasions
    Laurie A. Graham, Rod S. Hobbs, Garth L. Fletcher, Peter L. Davies, Annalisa Pastore
    PLoS ONE 2013 8 12
  • Subfunctionalization via Adaptive Evolution Influenced by Genomic Context: The Case of Histone Chaperones ASF1a and ASF1b
    Federico Abascal, Armelle Corpet, Zachary A. Gurard-Levin, David Juan, Françoise Ochsenbein, Daniel Rico, Alfonso Valencia, Geneviève Almouzni
    Molecular Biology and Evolution 2013 30 8
  • Evolution of a New Chlorophyll Metabolic Pathway Driven by the Dynamic Changes in Enzyme Promiscuous Activity
    Hisashi Ito, Ayumi Tanaka
    Plant and Cell Physiology 2014 55 3
  • Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects
    Alice B. Dennis, Luke T. Dunning, Brent J. Sinclair, Thomas R. Buckley
    Scientific Reports 2015 5 1
  • Pervasive Indels and Their Evolutionary Dynamics after the Fish-Specific Genome Duplication
    Baocheng Guo, Ming Zou, Andreas Wagner
    Molecular Biology and Evolution 2012 29 10
  • Looking for Darwin in Genomic Sequences—Validity and Success of Statistical Methods
    Weiwei Zhai, Rasmus Nielsen, Nick Goldman, Ziheng Yang
    Molecular Biology and Evolution 2012 29 10
  • In with the Old, in with the New: The Promiscuity of the Duplication Process Engenders Diverse Pathways for Novel Gene Creation
    Vaishali Katju
    International Journal of Evolutionary Biology 2012 2012
  • Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism
    Zhenhua Liu, Raquel Tavares, Evan S. Forsythe, François André, Raphaël Lugan, Gabriella Jonasson, Stéphanie Boutet-Mercey, Takayuki Tohge, Mark A. Beilstein, Danièle Werck-Reichhart, Hugues Renault
    Nature Communications 2016 7 1
  • Gene Family Expansions in Aphids Maintained by Endosymbiotic and Nonsymbiotic Traits
    Rebecca P. Duncan, Honglin Feng, Douglas M. Nguyen, Alex C. C. Wilson
    Genome Biology and Evolution 2016 8 3
  • Analyzing Cold Tolerance Mechanism in Transgenic Zebrafish (Danio rerio)
    Qian Wang, Xungang Tan, Shuang Jiao, Feng You, Pei-Jun Zhang, Nicholas S. Foulkes
    PLoS ONE 2014 9 7
  • Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids
    Xuan Zhuang, Chun Yang, Katherine R. Murphy, C.-H. Christina Cheng
    Proceedings of the National Academy of Sciences 2019 116 10
  • Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities
    Sean W. Phippen, Corey A. Stevens, Tyler D. R. Vance, Neil P. King, David Baker, Peter L. Davies
    Biochemistry 2016 55 49
  • An Insect Counteradaptation against Host Plant Defenses Evolved through Concerted Neofunctionalization
    Hanna M Heidel-Fischer, Roy Kirsch, Michael Reichelt, Seung-Joon Ahn, Natalie Wielsch, Simon W Baxter, David G Heckel, Heiko Vogel, Juergen Kroymann, Michael Purugganan
    Molecular Biology and Evolution 2019 36 5
  • Antifreeze protein gene amplification facilitated niche exploitation and speciation in wolffish
    Mariève Desjardins, Laurie A. Graham, Peter L. Davies, Garth L. Fletcher
    FEBS Journal 2012 279 12
  • Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2
    Brandon L. Logeman, L. Kent Wood, Jaekwon Lee, Dennis J. Thiele
    Journal of Biological Chemistry 2017 292 27
  • Diversity of the expression profiles of late embryogenesis abundant (LEA) protein encoding genes in the anhydrobiotic midge Polypedilum vanderplanki
    Rie Hatanaka, Oleg Gusev, Richard Cornette, Sachiko Shimura, Shingo Kikuta, Jun Okada, Takashi Okuda, Takahiro Kikawada
    Planta 2015 242 2
  • Polyploidy and Genome Evolution
    C. L. McGrath, M. Lynch
    2012
  • Adaptation and Evolution in Marine Environments, Volume 1
    Marino Vacchi, Philippe Koubbi, Laura Ghigliotti, Eva Pisano
    2012
  • Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature
    Brooks E. Miner, Paige M. Kulling, Karlyn D. Beer, Benjamin Kerr
    Molecular Ecology 2015 24 24
  • Widespread signatures of selection for secreted peptidases in a fungal plant pathogen
    Parvathy Krishnan, Xin Ma, Bruce A. McDonald, Patrick C. Brunner
    BMC Evolutionary Biology 2018 18 1
  • De novo transcriptome analysis of an Arctic microalga, Chlamydomonas sp.
    Sanghee Kim, Min Jung Kim, Min Gui Jung, Sooyong Lee, Ye-Seul Baek, Sung-Ho Kang, Han-Gu Choi
    Genes & Genomics 2013 35 2
  • Molecular adaptations in Antarctic fish and marine microorganisms
    Daniela Giordano, Roberta Russo, Guido di Prisco, Cinzia Verde
    Marine Genomics 2012 6
  • Natural macromolecular antifreeze agents to synthetic antifreeze agents
    V. Haridas, Sarala Naik
    RSC Advances 2013 3 34
  • The comparative landscape of duplications in Heliconius melpomene and Heliconius cydno
    A Pinharanda, S H Martin, S L Barker, J W Davey, C D Jiggins
    Heredity 2017 118 1
  • Main properties and evolutionary features of antifreeze proteins
    L. L. Bildanova, E. A. Salina, V. K. Shumny
    Russian Journal of Genetics: Applied Research 2013 3 1
  • The origin and diversification of a novel protein family in venomous snakes
    Matt W. Giorgianni, Noah L. Dowell, Sam Griffin, Victoria A. Kassner, Jane E. Selegue, Sean B. Carroll
    Proceedings of the National Academy of Sciences 2020 117 20
  • INCREASED GENE DOSAGE PLAYS A PREDOMINANT ROLE IN THE INITIAL STAGES OF EVOLUTION OF DUPLICATE TEM-1 BETA LACTAMASE GENES
    Riddhiman Dhar, Tobias Bergmiller, Andreas Wagner
    Evolution 2014 68 6
  • The properties, biotechnologies, and applications of antifreeze proteins
    Hong Xiang, Xiaohu Yang, Lei Ke, Yong Hu
    International Journal of Biological Macromolecules 2020 153
  • Characterization and evolutionary dynamics of complex regions in eukaryotic genomes
    José Ranz, Bryan Clifton
    Science China Life Sciences 2019 62 4
  • The identities of stop codon reassignments support ancestral tRNA stop codon decoding activity as a facilitator of gene duplication and evolution of novel function
    Steven E. Massey
    Gene 2017 619
  • Bioinformatics for Beginners
    Supratim Choudhuri
    2014
  • Early evolutionary history and genomic features of gene duplicates in the human genome
    Lijing Bu, Vaishali Katju
    BMC Genomics 2015 16 1
  • Epithelial dominant expression of antifreeze proteins in cunner suggests recent entry into a high freeze-risk ecozone
    Rod S. Hobbs, Garth L. Fletcher
    Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2013 164 1
  • Imbalanced positive selection maintains the functional divergence of duplicated DIHYDROKAEMPFEROL 4-REDUCTASE genes
    Bing-Hong Huang, Yi-Wen Chen, Chia-Lung Huang, Jian Gao, Pei-Chun Liao
    Scientific Reports 2016 6 1
  • Separation and identification of Brassica rapa BrAFP and its gene cloning and expression under freezing stress
    Zigang Liu, Xiaoyun Dong, Li Ma, Wancang Sun, Gang Yang, Yan Fang, Junyan Wu, Xuecai Li, Anne‐Marie Chevre
    Plant Breeding 2019 138 2
  • Recurrent evolution of vertebrate transcription factors by transposase capture
    Rachel L. Cosby, Julius Judd, Ruiling Zhang, Alan Zhong, Nathaniel Garry, Ellen J. Pritham, Cédric Feschotte
    Science 2021 371 6531
  • eLS
    Kenneth B Storey, Janet M Storey
    2011
  • Adaptation and Evolution in Marine Environments, Volume 1
    Lloyd S. Peck, Melody S. Clark
    2012
  • Protein evolution revisited
    Peter L. Davies, Laurie A. Graham
    Systems Biology in Reproductive Medicine 2018 64 6
  • Antifreeze proteins: effective adaptations of organisms for low temperature survival
    Steven N. Bagwell, Josette V. Ricker
    BIOS 2019 90 3
  • Elaboration of the Corticosteroid Synthesis Pathway in Primates through a Multistep Enzyme
    Carrie F Olson-Manning, Joanna Kelley
    Molecular Biology and Evolution 2020 37 8
  • Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance
    Qiao Huang, Ruiqin Hu, Hui zhu, Changlian Peng, Liangbiao Chen
    Aquaculture and Fisheries 2019
  • Sequential Molecular Events of Functional Trade-Offs in 5-Hydroxyisourate Hydrolase Before and After Gene Duplication Led to the Evolution of Transthyretin During Chordate Diversification
    Kiyoshi Yamauchi, Kentaro Kasai
    Journal of Molecular Evolution 2018 86 7
  • Similarities in biological processes can be used to bridge ecology and molecular biology
    Johan Hallin, Angel F. Cisneros, Mathieu Hénault, Anna Fijarczyk, Rohan Dandage, Carla Bautista, Christian R. Landry
    Evolutionary Applications 2020 13 6
  • Antifreeze Proteins Volume 1
    C.-H. Christina Cheng, Xuan Zhuang
    2020
  • Antifreeze Proteins Volume 1
    Arthur L. DeVries
    2020
  • Antifreeze Proteins Volume 2
    Erlend Kristiansen
    2020
  • Antifreeze protein dispersion in eelpouts and related fishes reveals migration and climate alteration within the last 20 Ma
    Rod S. Hobbs, Jennifer R. Hall, Laurie A. Graham, Peter L. Davies, Garth L. Fletcher, Michael Schubert
    PLOS ONE 2020 15 12
  • Collateral Toxicity Limits the Evolution of Bacterial Release Factor 2 toward Total Omnipotence
    Hind Abdalaal, Shreya Pundir, Xueliang Ge, Suparna Sanyal, Joakim Näsvall, Miriam Barlow
    Molecular Biology and Evolution 2020 37 10
  • Diversification of the duplicated Rab1a genes in a hypoxia-tolerant fish, common carp (Cyprinus carpio)
    Zi-Xia Zhao, Ding-Chen Cao, Jian Xu, Ru Xu, Jiong-Tang Li, Yan Zhang, Peng Xu, Xiao-Wen Sun
    Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2015 188
  • Evolution by Tumor Neofunctionalization
    2014
  • Evolutionary Biology
    Predrag Šustar, Zdenka Brzović
    2016
  • Genomic Elements in Health, Disease and Evolution
    Carolina Sismani, Costas Koufaris, Konstantinos Voskarides
    2015
  • Molecular Mechanisms of Microbial Evolution
    Charles G. Kurland, Ajith Harish
    2018
  • The Pangenome
    Guy-Franck Richard
    2020
  • Using Disease-Associated Coding Sequence Variation to Investigate Functional Compensation by Human Paralogous Proteins
    Sayaka Miura, Stephanie Tate, Sudhir Kumar
    Evolutionary Bioinformatics 2015 11

Article usage

Article usage: November 2010 to March 2021

AbstractFullPdf
Nov 2010972096
Dec 2010217677337
Total 2010314877433
Jan 2011120587192
Feb 20115164373
Mar 20112729097
Apr 20111722358
May 20111262135
Jun 20111073695
Jul 2011741846
Aug 20111133953
Sep 20112422637
Oct 20113813544
Nov 20111282828
Dec 20111072337
Total 20113443469795
Jan 20121062933
Feb 20121124161
Mar 2012672835
Apr 20121013950
May 2012841532
Jun 2012641622
Jul 2012581217
Aug 2012712530
Sep 2012126832
Oct 2012842438
Nov 2012892428
Dec 2012682221
Total 20121030283399
Jan 2013691820
Feb 20131023322
Mar 20131173740
Apr 20131022124
May 2013743024
Jun 2013563019
Jul 201354819
Aug 2013291714
Sep 2013411514
Oct 2013712517
Nov 20131014630
Dec 2013612632
Total 2013877306275
Jan 201455209
Feb 2014635115
Mar 2014773010
Apr 20141457223
May 2014741716
Jun 201471218
Jul 2014521622
Aug 2014634517
Sep 20141285627
Oct 2014904529
Nov 2014372512
Dec 2014692319
Total 2014924421207
Jan 2015752218
Feb 201535368
Mar 2015583618
Apr 20151045522
May 2015642812
Jun 201557228
Jul 2015511910
Aug 20152968
Sep 2015732411
Oct 2015784527
Nov 201550269
Dec 2015583316
Total 2015732352167
Jan 2016522715
Feb 2016745620
Mar 2016603421
Apr 2016825616
May 2016615117
Jun 2016533910
Jul 2016301110
Aug 201644116
Sep 201654727
Oct 2016522321
Nov 201677169
Dec 2016642715
Total 2016703358187
Jan 2017702329
Feb 2017613321
Mar 2017612024
Apr 20171053020
May 2017471418
Jun 2017292318
Jul 2017402110
Aug 2017481410
Sep 2017724021
Oct 2017543919
Nov 2017702120
Dec 2017353616
Total 2017692314226
Jan 2018464823
Feb 2018596217
Mar 2018927927
Apr 201816813829
May 2018967421
Jun 201847637
Jul 2018695412
Aug 2018545813
Sep 2018645424
Oct 2018456515
Nov 2018158418
Dec 201864112
Total 2018761820218
Jan 201995912
Feb 2019147718
Mar 20191512735
Apr 2019266515
May 2019134914
Jun 201944010
Jul 201944120
Aug 2019104613
Sep 201965315
Oct 2019207719
Nov 2019339123
Dec 20197579
Total 2019161782203
Jan 202065814
Feb 202056212
Mar 202085810
Apr 20201010311
May 202099421
Jun 2020614920
Jul 20201969
Aug 202056917
Sep 202047715
Oct 202085512
Nov 2020178620
Dec 2020118119
Total 202090988180
Jan 20211610329
Feb 2021810932
Mar 20211163
Total 20212522864
Total1258653983354
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict
Cheng Deng, C.-H. Christina Cheng, Hua Ye, Ximiao He, Liangbiao Chen
Proceedings of the National Academy of Sciences Dec 2010, 107 (50) 21593-21598; DOI: 10.1073/pnas.1007883107

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict
Cheng Deng, C.-H. Christina Cheng, Hua Ye, Ximiao He, Liangbiao Chen
Proceedings of the National Academy of Sciences Dec 2010, 107 (50) 21593-21598; DOI: 10.1073/pnas.1007883107
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Evolution
Proceedings of the National Academy of Sciences: 107 (50)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490