Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Functional cis-regulatory genomics for systems biology

Jongmin Nam, Ping Dong, Ryan Tarpine, Sorin Istrail, and Eric H. Davidson
  1. aDivision of Biology, California Institute of Technology, Pasadena, CA 91125; and
  2. bCenter for Computational Molecular Biology and Department of Computer Science, Brown University, Providence, RI 02912

See allHide authors and affiliations

PNAS February 23, 2010 107 (8) 3930-3935; https://doi.org/10.1073/pnas.1000147107
Jongmin Nam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ping Dong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryan Tarpine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sorin Istrail
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric H. Davidson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: davidson@caltech.edu
  1. Contributed by Eric H. Davidson, January 7, 2010 (sent for review November 19, 2009)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Gene expression is controlled by interactions between trans-regulatory factors and cis-regulatory DNA sequences, and these interactions constitute the essential functional linkages of gene regulatory networks (GRNs). Validation of GRN models requires experimental cis-regulatory tests of predicted linkages to authenticate their identities and proposed functions. However, cis-regulatory analysis is, at present, at a severe bottleneck in genomic system biology because of the demanding experimental methodologies currently in use for discovering cis-regulatory modules (CRMs), in the genome, and for measuring their activities. Here we demonstrate a high-throughput approach to both discovery and quantitative characterization of CRMs. The unique aspect is use of DNA sequence tags to “barcode” CRM expression constructs, which can then be mixed, injected together into sea urchin eggs, and subsequently deconvolved. This method has increased the rate of cis-regulatory analysis by >100-fold compared with conventional one-by-one reporter assays. The utility of the DNA-tag reporters was demonstrated by the rapid discovery of 81 active CRMs from 37 previously unexplored sea urchin genes. We then obtained simultaneous high-resolution temporal characterization of the regulatory activities of more than 80 CRMs. On average 2–3 CRMs were discovered per gene. Comparison of endogenous gene expression profiles with those of the CRMs recovered from each gene showed that, for most cases, at least one CRM is active in each phase of endogenous expression, suggesting that CRM recovery was comprehensive. This approach will qualitatively alter the practice of GRN construction as well as validation, and will impact many additional areas of regulatory system biology.

  • high-throughput discovery
  • sea urchin gene regulation

Footnotes

  • 1To whom correspondence should be addressed. E-mail: davidson{at}caltech.edu.
  • Author contributions: J.N. and E.H.D. designed research; J.N. and P.D. performed research; R.T. and S.I. provided new reagents/analytical tools; J.N. analyzed data; and J.N. and E.H.D. wrote the paper.

  • The authors declare no conflict of interest.

  • This article contains supporting information online at www.pnas.org/cgi/content/full/1000147107/DCSupplemental.

    View Full Text
    PreviousNext
    Back to top
    Article Alerts
    Email Article

    Thank you for your interest in spreading the word on PNAS.

    NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

    Enter multiple addresses on separate lines or separate them with commas.
    Functional cis-regulatory genomics for systems biology
    (Your Name) has sent you a message from PNAS
    (Your Name) thought you would like to see the PNAS web site.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Functional cis-regulatory genomics for systems biology
    Jongmin Nam, Ping Dong, Ryan Tarpine, Sorin Istrail, Eric H. Davidson
    Proceedings of the National Academy of Sciences Feb 2010, 107 (8) 3930-3935; DOI: 10.1073/pnas.1000147107

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    Request Permissions
    Share
    Functional cis-regulatory genomics for systems biology
    Jongmin Nam, Ping Dong, Ryan Tarpine, Sorin Istrail, Eric H. Davidson
    Proceedings of the National Academy of Sciences Feb 2010, 107 (8) 3930-3935; DOI: 10.1073/pnas.1000147107
    del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Mendeley logo Mendeley

    Article Classifications

    • Biological Sciences
    • Systems Biology
    Proceedings of the National Academy of Sciences: 107 (8)
    Table of Contents

    Submit

    Sign up for Article Alerts

    Jump to section

    • Article
      • Abstract
      • Results
      • Discussion
      • Methods
      • Acknowledgments
      • Footnotes
      • References
    • Figures & SI
    • Info & Metrics
    • PDF

    You May Also be Interested in

    Setting sun over a sun-baked dirt landscape
    Core Concept: Popular integrated assessment climate policy models have key caveats
    Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
    Image credit: Witsawat.S.
    Model of the Amazon forest
    News Feature: A sea in the Amazon
    Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
    Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
    Syrian archaeological site
    Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
    Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
    Image credit: Andrea Ricci.
    Click beetle on a leaf
    How click beetles jump
    Marianne Alleyna, Aimy Wissa, and Ophelia Bolmin explain how the click beetle amplifies power to pull off its signature jump.
    Listen
    Past PodcastsSubscribe
    Birds nestling on tree branches
    Parent–offspring conflict in songbird fledging
    Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
    Image credit: Gil Eckrich (photographer).

    Similar Articles

    Site Logo
    Powered by HighWire
    • Submit Manuscript
    • Twitter
    • Facebook
    • RSS Feeds
    • Email Alerts

    Articles

    • Current Issue
    • Special Feature Articles – Most Recent
    • List of Issues

    PNAS Portals

    • Anthropology
    • Chemistry
    • Classics
    • Front Matter
    • Physics
    • Sustainability Science
    • Teaching Resources

    Information

    • Authors
    • Editorial Board
    • Reviewers
    • Subscribers
    • Librarians
    • Press
    • Site Map
    • PNAS Updates
    • FAQs
    • Accessibility Statement
    • Rights & Permissions
    • About
    • Contact

    Feedback    Privacy/Legal

    Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490