Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration

Hui Shi, Xiaoxiao He, Kemin Wang, Xu Wu, Xiaosheng Ye, Qiuping Guo, Weihong Tan, Zhihe Qing, Xiaohai Yang, and Bing Zhou
  1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, China 410082

See allHide authors and affiliations

PNAS March 8, 2011 108 (10) 3900-3905; https://doi.org/10.1073/pnas.1016197108
Hui Shi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaoxiao He
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kemin Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: kmwang@hnu.cn
Xu Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaosheng Ye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Qiuping Guo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weihong Tan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zhihe Qing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaohai Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bing Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Larry Gold, SomaLogic, Inc., Boulder, CO, and approved January 21, 2011 (received for review October 29, 2010)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Aptamers have emerged as promising molecular probes for in vivo cancer imaging, but the reported “always-on” aptamer probes remain problematic because of high background and limited contrast. To address this problem, we designed an activatable aptamer probe (AAP) targeting membrane proteins of living cancer cells and achieved contrast-enhanced cancer visualization inside mice. The AAP displayed a quenched fluorescence in its free state and underwent a conformational alteration upon binding to target cancer cells with an activated fluorescence. As proof of concept, in vitro analysis and in vivo imaging of CCRF-CEM cancer cells were performed by using the specific aptamer, sgc8, as a demonstration. It was confirmed that the AAP could be specifically activated by target cancer cells with a dramatic fluorescence enhancement and exhibit improved sensitivity for CCRF-CEM cell analysis with the cell number of 118 detected in 200 μl binding buffer. In vivo studies demonstrated that activated fluorescence signals were obviously achieved in the CCRF-CEM tumor sites in mice. Compared to always-on aptamer probes, the AAP could substantially minimize the background signal originating from nontarget tissues, thus resulting in significantly enhanced image contrast and shortened diagnosis time to 15 min. Furthermore, because of the specific affinity of sgc8 to target cancer cells, the AAP also showed desirable specificity in differentiating CCRF-CEM tumors from Ramos tumors and nontumor areas. The design concept can be widely adapted to other cancer cell-specific aptamer probes for in vivo molecular imaging of cancer.

  • switchable aptamer probe
  • in vivo imaging
  • activatable fluorescent molecular imaging
  • cancer detection
  • cell surface protein

Footnotes

  • Author contributions: H.S., X.H., and K.W. designed research; H.S., X.W., and X. Ye performed research; H.S., X.H., K.W., W.T., and X. Yang analyzed data; Q.G., Z.Q., and B.Z. contributed new reagents/analytic tools; and H.S., X.H., K.W., and W.T. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016197108/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration
Hui Shi, Xiaoxiao He, Kemin Wang, Xu Wu, Xiaosheng Ye, Qiuping Guo, Weihong Tan, Zhihe Qing, Xiaohai Yang, Bing Zhou
Proceedings of the National Academy of Sciences Mar 2011, 108 (10) 3900-3905; DOI: 10.1073/pnas.1016197108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration
Hui Shi, Xiaoxiao He, Kemin Wang, Xu Wu, Xiaosheng Ye, Qiuping Guo, Weihong Tan, Zhihe Qing, Xiaohai Yang, Bing Zhou
Proceedings of the National Academy of Sciences Mar 2011, 108 (10) 3900-3905; DOI: 10.1073/pnas.1016197108
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Applied Biological Sciences
  • Physical Sciences
  • Chemistry
Proceedings of the National Academy of Sciences: 108 (10)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Conclusion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490