Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Climate change risks for African agriculture

Christoph Müller, Wolfgang Cramer, William L. Hare, and Hermann Lotze-Campen
PNAS March 15, 2011 108 (11) 4313-4315; https://doi.org/10.1073/pnas.1015078108
Christoph Müller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wolfgang Cramer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William L. Hare
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hermann Lotze-Campen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Robert W. Kates, Independent Scholar, Trenton, ME, and approved February 8, 2011 (received for review October 9, 2010)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

The Intergovernmental Panel on Climate Change (IPCC) assessment of major risks for African agriculture and food security caused by climate change during coming decades is confirmed by a review of more recent climate change impact assessments (14 quantitative, six qualitative). Projected impacts relative to current production levels range from −100% to +168% in econometric, from −84% to +62% in process-based, and from −57% to +30% in statistical assessments. Despite large uncertainty, there are several robust conclusions from published literature for policy makers and research agendas: agriculture everywhere in Africa runs some risk to be negatively affected by climate change; existing cropping systems and infrastructure will have to change to meet future demand. With respect to growing population and the threat of negative climate change impacts, science will now have to show if and how agricultural production in Africa can be significantly improved.

Footnotes

  • 1To whom correspondence should be addressed. E-mail: christoph.mueller{at}pik-potsdam.de
  • Author contributions: C.M. and W.C. designed research; C.M., W.C., W.L.H., and H.L.-C. performed research; C.M. analyzed data; and C.M., W.C., W.L.H., and H.L.-C. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015078108/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Climate change risks for African agriculture
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Climate change risks for African agriculture
Christoph Müller, Wolfgang Cramer, William L. Hare, Hermann Lotze-Campen
Proceedings of the National Academy of Sciences Mar 2011, 108 (11) 4313-4315; DOI: 10.1073/pnas.1015078108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Climate change risks for African agriculture
Christoph Müller, Wolfgang Cramer, William L. Hare, Hermann Lotze-Campen
Proceedings of the National Academy of Sciences Mar 2011, 108 (11) 4313-4315; DOI: 10.1073/pnas.1015078108
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (7)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Core Concept: Solving Peto’s Paradox to better understand cancer
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Image credit: Shutterstock.com/ronnybas frimages.
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Biological Sciences

  • Structural basis for activity of TRIC counter-ion channels in calcium release
  • PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin
  • Altered neural odometry in the vertical dimension
Show more

Agricultural Sciences

  • A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway
  • Small-scale urban agriculture results in high yields but requires judicious management of inputs to achieve sustainability
  • Decline in climate resilience of European wheat
Show more

Physical Sciences

  • Deep elastic strain engineering of bandgap through machine learning
  • Single-molecule excitation–emission spectroscopy
  • Microscopic description of acid–base equilibrium
Show more

Environmental Sciences

  • Fluorescent reconstitution on deposition of PM2.5 in lung and extrapulmonary organs
  • Stratification of reactivity determines nitrate removal in groundwater
  • In utero ultrafine particulate matter exposure causes offspring pulmonary immunosuppression
Show more

Related Content

  • No related articles found.
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Effects of climate variability and insurance adoption on crop production in select provinces of South Africa
  • Evaluation of the impacts of climate variability on rainfed maize production over the Wami-Ruvu basin of Tanzania
  • Assessment of the impacts of climate change on maize production in the Wami Ruvu basin of Tanzania
  • Civil conflict sensitivity to growing-season drought
  • The impact of high-end climate change on agricultural welfare
  • Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield
  • A systems science perspective and transdisciplinary models for food and nutrition security
  • Scopus (163)
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490