Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Stability of hydrocarbons at deep Earth pressures and temperatures

Leonardo Spanu, Davide Donadio, Detlef Hohl, Eric Schwegler, and Giulia Galli
PNAS April 26, 2011 108 (17) 6843-6846; https://doi.org/10.1073/pnas.1014804108
Leonardo Spanu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: lspanu@ucdavis.edu
Davide Donadio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Detlef Hohl
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric Schwegler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giulia Galli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Russell J. Hemley, Carnegie Institution of Washington, Washington, DC, and approved March 18, 2011 (received for review October 4, 2010)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Determining the thermochemical properties of hydrocarbons (HCs) at high pressure and temperature is a key step toward understanding carbon reservoirs and fluxes in the deep Earth. The stability of carbon-hydrogen systems at depths greater than a few thousand meters is poorly understood and the extent of abiogenic HCs in the Earth mantle remains controversial. We report ab initio molecular dynamics simulations and free energy calculations aimed at investigating the formation of higher HCs from dissociation of pure methane, and in the presence of carbon surfaces and transition metals, for pressures of 2 to 30 GPa and temperatures of 800 to 4,000 K. We show that for T≥2,000 K and P≥4 GPa HCs higher than methane are energetically favored. Our results indicate that higher HCs become more stable between 1,000 and 2,000 K and P≥4 GPa. The interaction of methane with a transition metal facilitates the formation of these HCs in a range of temperature where otherwise pure methane would be metastable. Our results provide a unified interpretation of several recent experiments and a detailed microscopic model of methane dissociation and polymerization at high pressure and temperature.

  • carbon cycle
  • Earth interior
  • numerical simulation

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: lspanu{at}ucdavis.edu.
  • Author contributions: L.S. designed the research, performed simulations, analyzed data, discussed results, and wrote the paper; D.D. helped setting up simulations, discussed results, and reviewed the manuscript; E.S., D.H. discussed results and reviewed the manuscript; and G.G. designed the research, discussed results, and wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Stability of hydrocarbons at deep Earth pressures and temperatures
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Stability of hydrocarbons at deep Earth pressures and temperatures
Leonardo Spanu, Davide Donadio, Detlef Hohl, Eric Schwegler, Giulia Galli
Proceedings of the National Academy of Sciences Apr 2011, 108 (17) 6843-6846; DOI: 10.1073/pnas.1014804108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Stability of hydrocarbons at deep Earth pressures and temperatures
Leonardo Spanu, Davide Donadio, Detlef Hohl, Eric Schwegler, Giulia Galli
Proceedings of the National Academy of Sciences Apr 2011, 108 (17) 6843-6846; DOI: 10.1073/pnas.1014804108
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 108 (17)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Chemistry

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490