Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Sensitivity, robustness, and identifiability in stochastic chemical kinetics models

Michał Komorowski, Maria J. Costa, David A. Rand, and Michael P. H. Stumpf
  1. aDivision of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom;
  2. bSystems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom; and
  3. cMathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

See allHide authors and affiliations

PNAS May 24, 2011 108 (21) 8645-8650; https://doi.org/10.1073/pnas.1015814108
Michał Komorowski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: m.komorowski@imperial.ac.uk m.stumpf@imperial.ac.uk
Maria J. Costa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Rand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael P. H. Stumpf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: m.komorowski@imperial.ac.uk m.stumpf@imperial.ac.uk
  1. Edited* by Dave Higdon, Los Alamos National Laboratory, and accepted by the Editorial Board March 24, 2011 (received for review October 22, 2010)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Online Impact

 

Article Information

vol. 108 no. 21 8645-8650
DOI: 
https://doi.org/10.1073/pnas.1015814108
PubMed: 
21551095

Published By: 
National Academy of Sciences
Print ISSN: 
0027-8424
Online ISSN: 
1091-6490
History: 
  • Published in issue May 24, 2011.
  • Published first May 6, 2011.


Author Information

  1. Michał Komorowskia,1,
  2. Maria J. Costab,
  3. David A. Randb,c, and
  4. Michael P. H. Stumpfa,1
  1. aDivision of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom;
  2. bSystems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom; and
  3. cMathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
  1. Edited* by Dave Higdon, Los Alamos National Laboratory, and accepted by the Editorial Board March 24, 2011 (received for review October 22, 2010)

Footnotes

  • 1To whom correspondence may be addressed. E-mail: m.komorowski{at}imperial.ac.uk or m.stumpf{at}imperial.ac.uk.
  • Author contributions: M.K., D.A.R., and M.P.H.S. designed research; M.K. and M.J.C. performed research; M.K. and M.P.H..S. analyzed data; and M.K. and M.P.H.S. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission. D.H. is a guest editor invited by the Editorial Board.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015814108/-/DCSupplemental.

Cited By...

  • 122 Citations
  • 113 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Mechanistic links between cellular trade-offs, gene expression, and growth
    Andrea Y. Weiße, Diego A. Oyarzún, Vincent Danos, Peter S. Swain
    Proceedings of the National Academy of Sciences 2015 112 9
  • Sensitivity analysis approaches applied to systems biology models
    Z. Zi
    IET Systems Biology 2011 5 6
  • A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation
    Juliane Liepe, Paul Kirk, Sarah Filippi, Tina Toni, Chris P Barnes, Michael P H Stumpf
    Nature Protocols 2014 9 2
  • Maximizing the Information Content of Experiments in Systems Biology
    Juliane Liepe, Sarah Filippi, Michał Komorowski, Michael P. H. Stumpf, Andrey Rzhetsky
    PLoS Computational Biology 2013 9 1
  • Markovian dynamics on complex reaction networks
    J. Goutsias, G. Jenkinson
    Physics Reports 2013 529 2
  • An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains
    David F. Anderson
    SIAM Journal on Numerical Analysis 2012 50 5
  • Designing experiments to understand the variability in biochemical reaction networks
    Jakob Ruess, Andreas Milias-Argeitis, John Lygeros
    Journal of The Royal Society Interface 2013 10 88
  • Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion
    Fabian Fröhlich, Philipp Thomas, Atefeh Kazeroonian, Fabian J. Theis, Ramon Grima, Jan Hasenauer, Daniel A Beard
    PLOS Computational Biology 2016 12 7
  • Iterative experiment design guides the characterization of a light-inducible gene expression circuit
    Jakob Ruess, Francesca Parise, Andreas Milias-Argeitis, Mustafa Khammash, John Lygeros
    Proceedings of the National Academy of Sciences 2015 112 26
  • A general moment expansion method for stochastic kinetic models
    Angelique Ale, Paul Kirk, Michael P. H. Stumpf
    The Journal of Chemical Physics 2013 138 17
  • Determining identifiable parameter combinations using subset profiling
    Marisa C. Eisenberg, Michael A.L. Hayashi
    Mathematical Biosciences 2014 256
  • System design of stochastic models using robustness of temporal properties
    Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti
    Theoretical Computer Science 2015 587
  • Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology
    Tina Toni, Bruce Tidor, Feilim Mac Gabhann
    PLoS Computational Biology 2013 9 3
  • Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics
    Brian Munsky, Zachary Fox, Gregor Neuert
    Methods 2015 85
  • Multivariate moment closure techniques for stochastic kinetic models
    Eszter Lakatos, Angelique Ale, Paul D. W. Kirk, Michael P. H. Stumpf
    The Journal of Chemical Physics 2015 143 9
  • Distribution shapes govern the discovery of predictive models for gene regulation
    Brian Munsky, Guoliang Li, Zachary R. Fox, Douglas P. Shepherd, Gregor Neuert
    Proceedings of the National Academy of Sciences 2018 115 29
  • Information theory and signal transduction systems: From molecular information processing to network inference
    Siobhan S. Mc Mahon, Aaron Sim, Sarah Filippi, Robert Johnson, Juliane Liepe, Dominic Smith, Michael P.H. Stumpf
    Seminars in Cell & Developmental Biology 2014 35
  • A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics
    Yannis Pantazis, Markos A. Katsoulakis
    The Journal of Chemical Physics 2013 138 5
  • How to deal with parameters for whole-cell modelling
    Ann C. Babtie, Michael P. H. Stumpf
    Journal of The Royal Society Interface 2017 14 133
  • ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics
    Jan Hasenauer, Christine Hasenauer, Tim Hucho, Fabian J. Theis, Jorg Stelling
    PLoS Computational Biology 2014 10 7
  • Bayesian Model Comparison and Parameter Inference in Systems Biology Using Nested Sampling
    Nick Pullen, Richard J. Morris, Simon Rogers
    PLoS ONE 2014 9 2
  • Harnessing QbD, Programming Languages, and Automation for Reproducible Biology
    Michael I. Sadowski, Chris Grant, Tim S. Fell
    Trends in Biotechnology 2016 34 3
  • On the Robustness of Temporal Properties for Stochastic Models
    Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti
    Electronic Proceedings in Theoretical Computer Science 2013 125
  • Convergence in parameters and predictions using computational experimental design
    David R. Hagen, Jacob K. White, Bruce Tidor
    Interface Focus 2013 3 4
  • Statistical analysis of nonlinear dynamical systems using differential geometric sampling methods
    Ben Calderhead, Mark Girolami
    Interface Focus 2011 1 6
  • Bayesian Experimental Design for Models with Intractable Likelihoods
    Christopher C. Drovandi, Anthony N. Pettitt
    Biometrics 2013 69 4
  • Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation
    Vassilios Stathopoulos, Mark A. Girolami
    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2013 371 1984
  • Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics
    Paul Dupuis, Markos A. Katsoulakis, Yannis Pantazis, Petr Plecháč
    SIAM/ASA Journal on Uncertainty Quantification 2016 4 1
  • Comparison of finite difference based methods to obtain sensitivities of stochastic chemical kinetic models
    Rishi Srivastava, David F. Anderson, James B. Rawlings
    The Journal of Chemical Physics 2013 138 7
  • Moment-Based Methods for Parameter Inference and Experiment Design for Stochastic Biochemical Reaction Networks
    Jakob Ruess, John Lygeros
    ACM Transactions on Modeling and Computer Simulation 2015 25 2
  • A cross-entropy method and probabilistic sensitivity analysis framework for calibrating microscopic traffic models
    R.X. Zhong, K.Y. Fu, A. Sumalee, D. Ngoduy, W.H.K. Lam
    Transportation Research Part C: Emerging Technologies 2016 63
  • Bayesian design strategies for synthetic biology
    Chris P. Barnes, Daniel Silk, Michael P. H. Stumpf
    Interface Focus 2011 1 6
  • A confidence building exercise in data and identifiability: Modeling cancer chemotherapy as a case study
    Marisa C. Eisenberg, Harsh V. Jain
    Journal of Theoretical Biology 2017 431
  • Information processing by simple molecular motifs and susceptibility to noise
    Siobhan S. Mc Mahon, Oleg Lenive, Sarah Filippi, Michael P. H. Stumpf
    Journal of The Royal Society Interface 2015 12 110
  • Biochemical fluctuations, optimisation and the linear noise approximation
    Jürgen Pahle, Joseph D Challenger, Pedro Mendes, Alan J McKane
    BMC Systems Biology 2012 6 1
  • Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia
    Helena L. Crowell, Adam L. MacLean, Michael P.H. Stumpf
    Journal of Theoretical Biology 2016 401
  • Efficient Computation of Sobol' Indices for Stochastic Models
    J. L. Hart, A. Alexanderian, P. A. Gremaud
    SIAM Journal on Scientific Computing 2017 39 4
  • Model-based design of experiments for cellular processes
    Ankush Chakrabarty, Gregery T. Buzzard, Ann E. Rundell
    Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2013 5 2
  • Multi-scenario modelling of uncertainty in stochastic chemical systems
    R. David Evans, Luis A. Ricardez-Sandoval
    Journal of Computational Physics 2014 273
  • An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
    Tomasz Jetka, Karol Nienałtowski, Sarah Filippi, Michael P. H. Stumpf, Michał Komorowski
    Nature Communications 2018 9 1
  • Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory
    Yannis Pantazis, Markos A Katsoulakis, Dionisios G Vlachos
    BMC Bioinformatics 2013 14 1
  • StochSens—matlab package for sensitivity analysis of stochastic chemical systems
    Michał Komorowski, Justina Žurauskienė, Michael P.H. Stumpf
    Bioinformatics 2012 28 5
  • A large-scale stochastic spatiotemporal model for Aedes albopictus-borne chikungunya epidemiology
    Kamil Erguler, Nastassya L. Chandra, Yiannis Proestos, Jos Lelieveld, George K. Christophides, Paul E. Parham, Guido Favia
    PLOS ONE 2017 12 3
  • Uncertainty in Biology
    Paul Kirk, Daniel Silk, Michael P. H. Stumpf
    2016 17
  • Fisher information metric for the Langevin equation and least informative models of continuous stochastic dynamics
    Kevin R. Haas, Haw Yang, Jhih-Wei Chu
    The Journal of Chemical Physics 2013 139 12
  • Size-Dependent Increase in RNA Polymerase II Initiation Rates Mediates Gene Expression Scaling with Cell Size
    Xi-Ming Sun, Anthony Bowman, Miles Priestman, Francois Bertaux, Amalia Martinez-Segura, Wenhao Tang, Chad Whilding, Dirk Dormann, Vahid Shahrezaei, Samuel Marguerat
    Current Biology 2020 30 7
  • Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process
    E. S. Palamarchuk
    Computational Mathematics and Mathematical Physics 2014 54 1
  • Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities
    Christoph Zimmer, Sven Sahle
    IET Systems Biology 2015 9 5
  • Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity
    Elizabeth C. Lee, Michael R. Kelly, Brad M. Ochocki, Segun M. Akinwumi, Karen E.S. Hamre, Joseph H. Tien, Marisa C. Eisenberg
    Journal of Theoretical Biology 2017 420
  • A finite difference method for estimating second order parameter sensitivities of discrete stochastic chemical reaction networks
    Elizabeth Skubak Wolf, David F. Anderson
    The Journal of Chemical Physics 2012 137 22
  • Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks
    Georgios Arampatzis, Markos A. Katsoulakis, Yannis Pantazis, William W Lytton
    PLOS ONE 2015 10 7
  • Parameter sensitivity analysis of stochastic models: Application to catalytic reaction networks
    Chiara Damiani, Alessandro Filisetti, Alex Graudenzi, Paola Lecca
    Computational Biology and Chemistry 2013 42
  • Comprehensive Review of Models and Methods for Inferences in Bio-Chemical Reaction Networks
    Pavel Loskot, Komlan Atitey, Lyudmila Mihaylova
    Frontiers in Genetics 2019 10
  • A New Stochastic Model for Subgenomic Hepatitis C Virus Replication Considers Drug Resistant Mutants
    Nikita V. Ivanisenko, Elena L. Mishchenko, Ilya R. Akberdin, Pavel S. Demenkov, Vitaly A. Likhoshvai, Konstantin N. Kozlov, Dmitry I. Todorov, Vitaly V. Gursky, Maria G. Samsonova, Alexander M. Samsonov, Diana Clausznitzer, Lars Kaderali, Nikolay A. Kolchanov, Vladimir A. Ivanisenko, Jinah Choi
    PLoS ONE 2014 9 3
  • Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics
    Karol Nienałtowski, Michał Włodarczyk, Tomasz Lipniacki, Michał Komorowski
    BMC Systems Biology 2015 9 1
  • Exploiting intrinsic fluctuations to identify model parameters
    Christoph Zimmer, Sven Sahle, Jürgen Pahle
    IET Systems Biology 2015 9 2
  • Reconstructing the hidden states in time course data of stochastic models
    Christoph Zimmer
    Mathematical Biosciences 2015 269
  • Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation
    Christoph Zimmer, Ramon Grima
    PLOS ONE 2016 11 9
  • Scalable information inequalities for uncertainty quantification
    Markos A. Katsoulakis, Luc Rey-Bellet, Jie Wang
    Journal of Computational Physics 2017 336
  • The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments
    Zachary R Fox, Brian Munsky, Oleg A Igoshin
    PLOS Computational Biology 2019 15 1
  • A new efficient approach to fit stochastic models on the basis of high-throughput experimental data using a model of IRF7 gene expression as case study
    Luis U. Aguilera, Christoph Zimmer, Ursula Kummer
    BMC Systems Biology 2017 11 1
  • Least Squares Estimation in Stochastic Biochemical Networks
    Grzegorz A. Rempala
    Bulletin of Mathematical Biology 2012 74 8
  • Stochasticity in Ca2+ Increase in Spines Enables Robust and Sensitive Information Coding
    Takuya Koumura, Hidetoshi Urakubo, Kaoru Ohashi, Masashi Fujii, Shinya Kuroda, Fabien Tell
    PLoS ONE 2014 9 6
  • An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems
    Monjur Morshed, Brian Ingalls, Silvana Ilie
    Biosystems 2017 151
  • Bootstrapping least-squares estimates in biochemical reaction networks
    Daniel F. Linder, Grzegorz A. Rempała
    Journal of Biological Dynamics 2015 9 1
  • Identifiability analysis and parameter estimation of a chikungunya model in a spatially continuous domain
    Shousheng Zhu, Nathalie Verdière, Lilianne Denis-Vidal, Djalil Kateb
    Ecological Complexity 2018 34
  • Selected-node stochastic simulation algorithm
    Lorenzo Duso, Christoph Zechner
    The Journal of Chemical Physics 2018 148 16
  • Solving linear unbranched pathways with Michaelis–Menten kinetics using the Lambert W-function
    L. Bayón, J. A. Otero, P. M. Suárez, C. Tasis
    Journal of Mathematical Chemistry 2016 54 7
  • Causality and Bayesian Network PDEs for multiscale representations of porous media
    Kimoon Um, Eric J. Hall, Markos A. Katsoulakis, Daniel M. Tartakovsky
    Journal of Computational Physics 2019 394
  • Control Theory and Experimental Design in Diffusion Processes
    Giles Hooker, Kevin K. Lin, Bruce Rogers
    SIAM/ASA Journal on Uncertainty Quantification 2015 3 1
  • Estimation and Discrimination of Stochastic Biochemical Circuits from Time-Lapse Microscopy Data
    David Thorsley, Eric Klavins, Jean Peccoud
    PLoS ONE 2012 7 11
  • Long-time analytic approximation of large stochastic oscillators: Simulation, analysis and inference
    Giorgos Minas, David A. Rand, Bard Ermentrout
    PLOS Computational Biology 2017 13 7
  • Phosphorelay of non-orthodox two component systems functions through a bi-molecular mechanism in vivo: the case of ArcB
    Goran Jovanovic, Xia Sheng, Angelique Ale, Elisenda Feliu, Heather A. Harrington, Paul Kirk, Carsten Wiuf, Martin Buck, Michael P. H. Stumpf
    Molecular BioSystems 2015 11 5
  • Sensitivity analysis of a linear and unbranched chemical process with $$n$$ n steps
    L. Bayón, J. A. Otero, M. M. Ruiz, P. M. Suárez, C. Tasis
    Journal of Mathematical Chemistry 2015 53 3
  • The Limited Information Capacity of Cross-Reactive Sensors Drives the Evolutionary Expansion of Signaling
    Michał Komorowski, Dan S. Tawfik
    Cell Systems 2019 8 1
  • Reverse engineering gene networks using global–local shrinkage rules
    Viral Panchal, Daniel F. Linder
    Interface Focus 2020 10 1
  • Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth
    Marzena Dolbniak, Malgorzata Kardynska, Jaroslaw Smieja
    Discrete & Continuous Dynamical Systems - B 2018 23 1
  • Critical scaling in hidden state inference for linear Langevin dynamics
    B Bravi, P Sollich
    Journal of Statistical Mechanics: Theory and Experiment 2017 2017 6
  • How Biased Is Your Model? Concentration Inequalities, Information and Model Bias
    Konstantinos Gourgoulias, Markos A. Katsoulakis, Luc Rey-Bellet, Jie Wang
    IEEE Transactions on Information Theory 2020 66 5
  • Maximum Caliber Can Build and Infer Models of Oscillation in a Three-Gene Feedback Network
    Taylor Firman, Anar Amgalan, Kingshuk Ghosh
    The Journal of Physical Chemistry B 2019 123 2
  • Robust Information Divergences for Model-Form Uncertainty Arising from Sparse Data in Random PDE
    Eric Joseph Hall, Markos A. Katsoulakis
    SIAM/ASA Journal on Uncertainty Quantification 2018 6 4
  • The meaning of sensitivity functions in signaling pathways analysis
    Jaroslaw Smieja, Malgorzata Kardynska, Arkadiusz Jamroz
    Discrete & Continuous Dynamical Systems - B 2014 19 8
  • Data-driven, variational model reduction of high-dimensional reaction networks
    Markos A. Katsoulakis, Pedro Vilanova
    Journal of Computational Physics 2020 401
  • Defining Biological Networks for Noise Buffering and Signaling Sensitivity Using Approximate Bayesian Computation
    Shuqiang Wang, Yanyan Shen, Changhong Shi, Tao Wang, Zhiming Wei, Hanxiong Li
    The Scientific World Journal 2014 2014
  • Elucidating Cellular Population Dynamics by Molecular Density Function Perturbations
    Thanneer Perumal, Rudiyanto Gunawan
    Processes 2018 6 2
  • Hybrid Systems Biology
    Charalampos Kyriakopoulos, Verena Wolf
    2015 7699
  • Replication of the subgenomic hepatitis C virus replicon in the presence of the NS3 protease inhibitors: a stochastic model
    N. V. Ivanisenko, E. L. Mishchenko, I. R. Akberdin, P. S. Demenkov, V. A. Likhoshvai, K. N. Kozlov, D. I. Todorov, M. G. Samsonova, A. M. Samsonov, N. A. Kolchanov, V. A. Ivanisenko
    Biophysics 2013 58 5
  • Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology
    Stefan Engblom, Andreas Hellander, Per Lötstedt
    2017
  • Stochastic system identification without an a priori chosen kinetic model—exploring feasible cell regulation with piecewise linear functions
    Martin Hoffmann, Jörg Galle
    npj Systems Biology and Applications 2018 4 1
  • Transient fluctuation of the prosperity of firms in a network economy
    Yoshiharu Maeno
    Physica A: Statistical Mechanics and its Applications 2013 392 16
  • A guide to sensitivity analysis of quantitative models of gene expression dynamics
    Bradford Taylor, Tae J. Lee, Joshua S. Weitz
    Methods 2013 62 1
  • An adaptive solution to the chemical master equation using quantized tensor trains with sliding windows
    Trang Dinh, Roger B Sidje
    Physical Biology 2020 17 6
  • Computational Methods in Systems Biology
    Jakob Ruess, John Lygeros
    2013 8130
  • Computational Methods in Systems Biology
    Justin Feigelman, Daniel Weindl, Fabian J. Theis, Carsten Marr, Jan Hasenauer
    2018 11095
  • Cost-Constrained Optimal Sampling for System Identification in Pharmacokinetics Applications with Population Priors and Nuisance Parameters
    Carlos Oscars S. Sorzano, Maria Angeles Pérez-De-La-Cruz Moreno, Jordi Burguet-Castell, Consuelo Montejo, Antonio Aguilar Ros
    Journal of Pharmaceutical Sciences 2015 104 6
  • Diverse Cell Stimulation Kinetics Identify Predictive Signal Transduction Models
    Hossein Jashnsaz, Zachary R. Fox, Jason J. Hughes, Guoliang Li, Brian Munsky, Gregor Neuert
    iScience 2020 23 10
  • Dynamic model adaptation to an anaerobic digestion reactor of a water resource recovery facility
    Shadi Attar, Finn Haugen
    Modeling, Identification and Control: A Norwegian Research Bulletin 2019 40 3
  • Encyclopedia of Systems and Control
    Mustafa Khammash, J. Lygeros
    2014
  • Estimating Equations for Density Dependent Markov Jump Processes
    Oluseyi Odubote, Daniel F. Linder
    Mathematics 2021 9 4
  • Fitting mathematical models of biochemical pathways to steady state perturbation response data without simulating perturbation experiments
    Tapesh Santra
    Scientific Reports 2018 8 1
  • Identifiability analysis for stochastic differential equation models in systems biology
    Alexander P. Browning, David J. Warne, Kevin Burrage, Ruth E. Baker, Matthew J. Simpson
    Journal of The Royal Society Interface 2020 17 173
  • Identifiability of a Binomial Synapse
    Camille Gontier, Jean-Pascal Pfister
    Frontiers in Computational Neuroscience 2020 14
  • Identifiability of stochastically modelled reaction networks
    GERMAN ENCISO, RADEK ERBAN, JINSU KIM
    European Journal of Applied Mathematics 2021
  • Maximum Caliber Can Build and Infer Models of Oscillation in a Three-Gene Feedback Network
    Taylor Firman, Anar Amgalan, Kingshuk Ghosh
    The Journal of Physical Chemistry A 2018
  • Multiplexing information flow through dynamic signalling systems
    Giorgos Minas, Dan J. Woodcock, Louise Ashall, Claire V. Harper, Michael R. H. White, David A. Rand, Attila Csikász-Nagy
    PLOS Computational Biology 2020 16 8
  • Optimal Design of Single-Cell Experiments within Temporally Fluctuating Environments
    Zachary R. Fox, Gregor Neuert, Brian Munsky
    Complexity 2020 2020
  • Parameter identification using stochastic simulations reveals a robustness in CD95 apoptotic response
    Christoph Zimmer, Kolja Schleich, Inna Lavrik
    Molecular BioSystems 2016 12 5
  • Parameter inference in dynamical systems with co-dimension 1 bifurcations
    Elisabeth Roesch, Michael P. H. Stumpf
    Royal Society Open Science 2019 6 10
  • Ranking of Reactions Based on Sensitivity of Protein Noise Depends on the Choice of Noise Measure
    Sucheta Gokhale, Chetan Gadgil, Jose M. G. Vilar
    PLOS ONE 2015 10 12
  • Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution
    Brian K. Mannakee, Ryan N. Gutenkunst, Jianzhi Zhang
    PLOS Genetics 2016 12 7
  • Stochastic models for single‐cell data: Current challenges and the way forward
    Ian S. Hsu, Alan M. Moses
    The FEBS Journal 2021
  • Unwinding biological systems
    Alberto Casagrande, Carla Piazza
    Theoretical Computer Science 2015 587
  • Variance of Finite Difference Methods for Reaction Networks with Non-Lipschitz Rate Functions
    David F. Anderson, Chaojie Yuan
    SIAM Journal on Numerical Analysis 2020 58 6

Article usage

Article usage: May 2011 to March 2021

AbstractFullPdf
May 20116811110605
Jun 2011101856147
Jul 20112973863
Aug 20112182355
Sep 20111822752
Oct 20111562057
Nov 20111553349
Dec 2011971253
Total 201189343191081
Jan 2012962547
Feb 20121272264
Mar 20121192848
Apr 20121092548
May 2012953045
Jun 2012772740
Jul 2012691739
Aug 2012771750
Sep 2012632140
Oct 2012521631
Nov 2012511929
Dec 2012742835
Total 20121009275516
Jan 2013814529
Feb 2013784340
Mar 2013602431
Apr 2013933245
May 20131024145
Jun 2013635429
Jul 2013752432
Aug 2013532930
Sep 2013341425
Oct 2013712527
Nov 2013741724
Dec 2013471630
Total 2013831364387
Jan 2014762025
Feb 2014411534
Mar 20141093050
Apr 2014562361
May 2014752256
Jun 2014562042
Jul 2014492142
Aug 2014472644
Sep 2014581927
Oct 2014643125
Nov 2014511919
Dec 2014511820
Total 2014733264445
Jan 2015672722
Feb 2015532217
Mar 2015633514
Apr 2015564245
May 2015483026
Jun 2015533021
Jul 2015782527
Aug 2015303710
Sep 2015621540
Oct 2015523725
Nov 2015604633
Dec 2015334425
Total 2015655390305
Jan 2016397216
Feb 2016391469
Mar 20163115622
Apr 20163519113
May 20163522910
Jun 20163621822
Jul 20164113122
Aug 20166817432
Sep 2016646935
Oct 2016522330
Nov 2016491918
Dec 2016531427
Total 20165421442256
Jan 2017362919
Feb 2017442912
Mar 2017404323
Apr 201738823
May 2017372924
Jun 2017543340
Jul 2017391812
Aug 2017542329
Sep 2017332825
Oct 2017383630
Nov 2017384137
Dec 2017201316
Total 2017471330290
Jan 2018423628
Feb 2018727242
Mar 2018757851
Apr 2018767041
May 2018525025
Jun 2018475023
Jul 2018525318
Aug 2018695429
Sep 2018564938
Oct 201865322
Nov 201895718
Dec 201863013
Total 2018562652348
Jan 2019192527
Feb 2019113921
Mar 2019243524
Apr 2019145623
May 2019153617
Jun 2019172928
Jul 2019193941
Aug 2019133935
Sep 2019102229
Oct 2019183921
Nov 2019124526
Dec 2019143321
Total 2019186437313
Jan 2020165330
Feb 202093721
Mar 2020113915
Apr 202083614
May 202077628
Jun 2020137636
Jul 2020145134
Aug 202023525
Sep 202095021
Oct 202076428
Nov 2020366140
Dec 2020295019
Total 2020161628311
Jan 202197224
Feb 2021154619
Mar 2021241
Total 20212612244
Total1411052234296
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sensitivity, robustness, and identifiability in stochastic chemical kinetics models
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Sensitivity, robustness, and identifiability in stochastic chemical kinetics models
Michał Komorowski, Maria J. Costa, David A. Rand, Michael P. H. Stumpf
Proceedings of the National Academy of Sciences May 2011, 108 (21) 8645-8650; DOI: 10.1073/pnas.1015814108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Sensitivity, robustness, and identifiability in stochastic chemical kinetics models
Michał Komorowski, Maria J. Costa, David A. Rand, Michael P. H. Stumpf
Proceedings of the National Academy of Sciences May 2011, 108 (21) 8645-8650; DOI: 10.1073/pnas.1015814108
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Biophysics and Computational Biology
  • Physical Sciences
  • Applied Mathematics
Proceedings of the National Academy of Sciences: 108 (21)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Chemical Kinetics Models
    • Fisher Information Matrix
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490