Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade

Stephen F. Price, Antony J. Payne, Ian M. Howat, and Benjamin E. Smith
PNAS May 31, 2011 108 (22) 8978-8983; https://doi.org/10.1073/pnas.1017313108
Stephen F. Price
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antony J. Payne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ian M. Howat
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin E. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Hans-Joachim Schellnhuber, Potsdam Institute for Climate Impact Research, Potsdam, Germany, and approved April 19, 2011 (received for review November 22, 2010)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland’s three largest outlet glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 ± 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 ± 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, > 75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing.

  • ice sheet modeling
  • climate change

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: sprice{at}lanl.gov.
  • Author contributions: S.F.P. and A.J.P. designed research; S.F.P. performed research; S.F.P., A.J.P., I.M.H., and B.E.S. contributed new reagents/analytic tools; S.F.P., A.J.P., I.M.H., and B.E.S. analyzed data; and S.F.P., A.J.P., I.M.H., and B.E.S. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1017313108/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade
Stephen F. Price, Antony J. Payne, Ian M. Howat, Benjamin E. Smith
Proceedings of the National Academy of Sciences May 2011, 108 (22) 8978-8983; DOI: 10.1073/pnas.1017313108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade
Stephen F. Price, Antony J. Payne, Ian M. Howat, Benjamin E. Smith
Proceedings of the National Academy of Sciences May 2011, 108 (22) 8978-8983; DOI: 10.1073/pnas.1017313108
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (8)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion and Conclusions
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

News Feature: Cities serve as testbeds for evolutionary change
Urban living can pressure flora and fauna to adapt in intriguing ways. Biologists are starting to take advantage of this convenient laboratory of evolution.
Image credit: Kristin Winchell (Washington University in St. Louis, St. Louis).
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Physical Sciences

  • Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence
  • Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration
  • Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-mediated calcium leak and is antiarrhythmic
Show more

Geophysics

  • Mineralogical effects on the detectability of the postperovskite boundary
  • Solar composition from the Genesis Discovery Mission
  • Increase of extreme events in a warming world
Show more

Related Content

  • No related articles found.
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Friction at the bed does not control fast glacier flow
  • Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
  • Future sea level rise constrained by observations and long-term commitment
  • Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics
  • Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise
  • The multimillennial sea-level commitment of global warming
  • Probabilistic framework for assessing the ice sheet contribution to sea level change
  • 21st-Century Evolution of Greenland Outlet Glacier Velocities
  • Scopus (127)
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490