Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle

Jasper F. Kok
PNAS January 18, 2011 108 (3) 1016-1021; https://doi.org/10.1073/pnas.1014798108
Jasper F. Kok
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jfkok@umich.edu
  1. Edited by Inez Y. Fung, University of California, Berkeley, CA, and approved October 27, 2010 (received for review October 4, 2010)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Mineral dust aerosols impact Earth’s radiation budget through interactions with clouds, ecosystems, and radiation, which constitutes a substantial uncertainty in understanding past and predicting future climate changes. One of the causes of this large uncertainty is that the size distribution of emitted dust aerosols is poorly understood. The present study shows that regional and global circulation models (GCMs) overestimate the emitted fraction of clay aerosols (< 2 μm diameter) by a factor of ∼2–8 relative to measurements. This discrepancy is resolved by deriving a simple theoretical expression of the emitted dust size distribution that is in excellent agreement with measurements. This expression is based on the physics of the scale-invariant fragmentation of brittle materials, which is shown to be applicable to dust emission. Because clay aerosols produce a strong radiative cooling, the overestimation of the clay fraction causes GCMs to also overestimate the radiative cooling of a given quantity of emitted dust. On local and regional scales, this affects the magnitude and possibly the sign of the dust radiative forcing, with implications for numerical weather forecasting and regional climate predictions in dusty regions. On a global scale, the dust cycle in most GCMs is tuned to match radiative measurements, such that the overestimation of the radiative cooling of a given quantity of emitted dust has likely caused GCMs to underestimate the global dust emission rate. This implies that the deposition flux of dust and its fertilizing effects on ecosystems may be substantially larger than thought.

  • direct radiative forcing
  • scale invariance
  • aeolian saltation
  • dust storms
  • wind erosion

Footnotes

  • 1E-mail: jfkok{at}umich.edu.
  • Author contributions: J.F.K. designed research, performed research, analyzed data, and wrote the paper.

  • The author declares no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014798108/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle
Jasper F. Kok
Proceedings of the National Academy of Sciences Jan 2011, 108 (3) 1016-1021; DOI: 10.1073/pnas.1014798108

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle
Jasper F. Kok
Proceedings of the National Academy of Sciences Jan 2011, 108 (3) 1016-1021; DOI: 10.1073/pnas.1014798108
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 108 (3)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Physical Sciences
  • Geophysics

Jump to section

  • Article
    • Abstract
    • The Physics of Dust Emission
    • The Fragmentation of Brittle Materials
    • Theoretical Model of Dust Emission
    • Results
    • Implications for Regional and Global Dust Modeling
    • Summary and Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490