Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein

Joseph F. Nabhan, Ruoxi Hu, Raymond S. Oh, Stanley N. Cohen, and Quan Lu
PNAS March 13, 2012 109 (11) 4146-4151; https://doi.org/10.1073/pnas.1200448109
Joseph F. Nabhan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruoxi Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raymond S. Oh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stanley N. Cohen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: qlu@hsph.harvard.edu sncohen@stanford.edu
Quan Lu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: qlu@hsph.harvard.edu sncohen@stanford.edu
  1. Contributed by Stanley N. Cohen, January 11, 2012 (sent for review December 26, 2011)

Related Articles

  • ARRDC1 as a mediator of microvesicle budding
    - Feb 29, 2012
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Mammalian cells are capable of delivering multiple types of membrane capsules extracellularly. The limiting membrane of late endosomes can fuse with the plasma membrane, leading to the extracellular release of multivesicular bodies (MVBs), initially contained within the endosomes, as exosomes. Budding viruses exploit the TSG101 protein and endosomal sorting complex required for transport (ESCRT) machinery used for MVB formation to mediate the egress of viral particles from host cells. Here we report the discovery of a virus-independent cellular process that generates microvesicles that are distinct from exosomes and which, like budding viruses, are produced by direct plasma membrane budding. Such budding is driven by a specific interaction of TSG101 with a tetrapeptide PSAP motif of an accessory protein, arrestin domain-containing protein 1 (ARRDC1), which we show is localized to the plasma membrane through its arrestin domain. This interaction results in relocation of TSG101 from endosomes to the plasma membrane and mediates the release of microvesicles that contain TSG101, ARRDC1, and other cellular proteins. Unlike exosomes, which are derived from MVBs, ARRDC1-mediated microvesicles (ARMMs) lack known late endosomal markers. ARMMs formation requires VPS4 ATPase and is enhanced by the E3 ligase WWP2, which interacts with and ubiquitinates ARRDC1. ARRDC1 protein discharged into ARMMs was observed in co-cultured cells, suggesting a role for ARMMs in intercellular communication. Our findings reveal an intrinsic cellular mechanism that results in direct budding of microvesicles from the plasma membrane, providing a formal paradigm for the evolutionary recruitment of ESCRT proteins in the release of budding viruses.

  • Gag
  • receptor
  • ubiquitin
  • vesicle

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: qlu{at}hsph.harvard.edu or sncohen{at}stanford.edu.
  • Author contributions: J.F.N., S.N.C., and Q.L. designed research; J.F.N. and R.H. performed research; R.S.O. contributed new reagents/analytic tools; J.F.N., S.N.C., and Q.L. analyzed data; and J.F.N., S.N.C., and Q.L. wrote the paper.

  • The authors declare no conflict of interest.

  • See Commentary on page 4025.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1200448109/-/DCSupplemental.

Freely available online through the PNAS open access option.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein
Joseph F. Nabhan, Ruoxi Hu, Raymond S. Oh, Stanley N. Cohen, Quan Lu
Proceedings of the National Academy of Sciences Mar 2012, 109 (11) 4146-4151; DOI: 10.1073/pnas.1200448109

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein
Joseph F. Nabhan, Ruoxi Hu, Raymond S. Oh, Stanley N. Cohen, Quan Lu
Proceedings of the National Academy of Sciences Mar 2012, 109 (11) 4146-4151; DOI: 10.1073/pnas.1200448109
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 109 (11)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Cell Biology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490