Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Bioinspired nanofibers support chondrogenesis for articular cartilage repair

Jeannine M. Coburn, Matthew Gibson, Sean Monagle, Zachary Patterson, and Jennifer H. Elisseeff
PNAS June 19, 2012 109 (25) 10012-10017; https://doi.org/10.1073/pnas.1121605109
Jeannine M. Coburn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew Gibson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean Monagle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Zachary Patterson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer H. Elisseeff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited* by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved May 4, 2012 (received for review January 4, 2012)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

Articular cartilage repair remains a significant and growing clinical challenge with the aging population. The native extracellular matrix (ECM) of articular cartilage is a 3D structure composed of proteinaceous fibers and a hydrogel ground substance that together provide the physical and biological cues to instruct cell behavior. Here we present fibrous scaffolds composed of poly(vinyl alcohol) and the biological cue chondroitin sulfate with fiber dimensions on the nanoscale for application to articular cartilage repair. The unique, low-density nature of the described nanofiber scaffolds allows for immediate cell infiltration for optimal tissue repair. The capacity for the scaffolds to facilitate cartilage-like tissue formation was evaluated in vitro. Compared with pellet cultures, the nanofiber scaffolds enhance chondrogenic differentiation of mesenchymal stems cells as indicated by increased ECM production and cartilage specific gene expression while also permitting cell proliferation. When implanted into rat osteochondral defects, acellular nanofiber scaffolds supported enhanced chondrogenesis marked by proteoglycan production minimally apparent in defects left empty. Furthermore, inclusion of chondroitin sulfate into the fibers enhanced cartilage-specific type II collagen synthesis in vitro and in vivo. By mimicking physical and biological cues of native ECM, the nanofiber scaffolds enhanced cartilaginous tissue formation, suggesting their potential utility for articular cartilage repair.

  • biomaterials
  • electrospin
  • tissue engineering
  • regenerative medicine

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: jhe{at}jhu.edu.
  • Author contributions: J.M.C., M.G., and J.H.E. designed research; J.M.C., S.M., and Z.P. performed research; J.M.C. and J.H.E. analyzed data; and J.M.C. and J.H.E. wrote the paper.

  • The authors declare no conflict of interest.

  • ↵*This Direct Submission article had a prearranged editor.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121605109/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Bioinspired nanofibers support chondrogenesis for articular cartilage repair
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Nanofibers support articular cartilage repair
Jeannine M. Coburn, Matthew Gibson, Sean Monagle, Zachary Patterson, Jennifer H. Elisseeff
Proceedings of the National Academy of Sciences Jun 2012, 109 (25) 10012-10017; DOI: 10.1073/pnas.1121605109

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Nanofibers support articular cartilage repair
Jeannine M. Coburn, Matthew Gibson, Sean Monagle, Zachary Patterson, Jennifer H. Elisseeff
Proceedings of the National Academy of Sciences Jun 2012, 109 (25) 10012-10017; DOI: 10.1073/pnas.1121605109
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (7)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Core Concept: Solving Peto’s Paradox to better understand cancer
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Image credit: Shutterstock.com/ronnybas frimages.
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Biological Sciences

  • Structural basis for activity of TRIC counter-ion channels in calcium release
  • PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin
  • Altered neural odometry in the vertical dimension
Show more

Medical Sciences

  • WNK4 kinase is a physiological intracellular chloride sensor
  • Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma
  • Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma
Show more

Related Content

  • No related articles found.
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Engineering Complex Tissues
  • Scopus (121)
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490