New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Marine protected areas and the value of spatially optimized fishery management
Edited by Edward L. Miles, University of Washington, Seattle, WA, and approved May 29, 2012 (received for review October 14, 2011)

Abstract
There is a growing focus around the world on marine spatial planning, including spatial fisheries management. Some spatial management approaches are quite blunt, as when marine protected areas (MPAs) are established to restrict fishing in specific locations. Other management tools, such as zoning or spatial user rights, will affect the distribution of fishing effort in a more nuanced manner. Considerable research has focused on the ability of MPAs to increase fishery returns, but the potential for the broader class of spatial management approaches to outperform MPAs has received far less attention. We use bioeconomic models of seven nearshore fisheries in Southern California to explore the value of optimized spatial management in which the distribution of fishing is chosen to maximize profits. We show that fully optimized spatial management can substantially increase fishery profits relative to optimal nonspatial management but that the magnitude of this increase depends on characteristics of the fishing fleet and target species. Strategically placed MPAs can also increase profits substantially compared with nonspatial management, particularly if fishing costs are low, although profit increases available through optimal MPA-based management are roughly half those from fully optimized spatial management. However, if the same total area is protected by randomly placing MPAs, starkly contrasting results emerge: most random MPA designs reduce expected profits. The high value of spatial management estimated here supports continued interest in spatially explicit fisheries regulations but emphasizes that predicted increases in profits can only be achieved if the fishery is well understood and the regulations are strategically designed.
Footnotes
- ↵1To whom correspondence should be addressed. E-mail: rassweil{at}lifesci.ucsb.edu.
Author contributions: A.R., C.C., and D.A.S. designed research; A.R. performed research; A.R., C.C., and D.A.S. analyzed data; and A.R. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1116193109/-/DCSupplemental.
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Biological Sciences
- Sustainability Science
- Social Sciences
- Economic Sciences