Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Resetting capacity limitations revealed by long-lasting elimination of attentional blink through training

Hoon Choi, Li-Hung Chang, Kazuhisa Shibata, Yuka Sasaki, and Takeo Watanabe
PNAS July 24, 2012 109 (30) 12242-12247; https://doi.org/10.1073/pnas.1203972109
Hoon Choi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hoonchoi@bu.edu
Li-Hung Chang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazuhisa Shibata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuka Sasaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takeo Watanabe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited* by Dale Purves, Duke University Medical Center, Durham, NC, and approved May 30, 2012 (received for review March 7, 2012)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

As with other cognitive phenomena that are based upon the capacity limitations of visual processing, it is thought that attentional blink (AB) cannot be eliminated, even after extensive training. We report in this paper that just 1 h of specific attentional training can completely eliminate AB, and that this effect is robust enough to persist for a few months after training. Results of subsequent behavioral and functional magnetic resonance imaging (fMRI) experiments indicate that this learning effect is associated with improvements in temporal resolution, which are mainly due to processing in the prefrontal areas. Contrary to prior wisdom, we conclude that capacity limitations can be overcome by short-term training.

  • learning in temporal attention
  • color-salient training
  • plasticity

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: hoonchoi{at}bu.edu.
  • Author contributions: H.C., Y.S., and T.W. designed research; H.C. and L.-H.C. performed research; H.C., L.-H.C., K.S., Y.S., and T.W. analyzed data; and H.C., L.-H.C., K.S., Y.S., and T.W. wrote the paper.

  • The authors declare no conflict of interest.

  • ↵*This Direct Submission article had a prearranged editor.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1203972109/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Resetting capacity limitations revealed by long-lasting elimination of attentional blink through training
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Elimination of attentional blink through training
Hoon Choi, Li-Hung Chang, Kazuhisa Shibata, Yuka Sasaki, Takeo Watanabe
Proceedings of the National Academy of Sciences Jul 2012, 109 (30) 12242-12247; DOI: 10.1073/pnas.1203972109

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Elimination of attentional blink through training
Hoon Choi, Li-Hung Chang, Kazuhisa Shibata, Yuka Sasaki, Takeo Watanabe
Proceedings of the National Academy of Sciences Jul 2012, 109 (30) 12242-12247; DOI: 10.1073/pnas.1203972109
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 109 (30)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Psychological and Cognitive Sciences

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Experimental Procedures
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Multi-color molecular model
Enzymatic breakdown of PET plastic
A study demonstrates how two enzymes—MHETase and PETase—work synergistically to depolymerize the plastic pollutant PET.
Image credit: Aaron McGeehan (artist).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490