Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Inaugural Article

Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

Keren Lasker, Friedrich Förster, Stefan Bohn, Thomas Walzthoeni, Elizabeth Villa, Pia Unverdorben, Florian Beck, Ruedi Aebersold, Andrej Sali, and Wolfgang Baumeister
PNAS January 31, 2012 109 (5) 1380-1387; https://doi.org/10.1073/pnas.1120559109
Keren Lasker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Friedrich Förster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan Bohn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Walzthoeni
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth Villa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pia Unverdorben
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Florian Beck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruedi Aebersold
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrej Sali
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sali@salilab.org baumeist@biochem.mpg.de
Wolfgang Baumeister
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sali@salilab.org baumeist@biochem.mpg.de
  1. Contributed by Wolfgang Baumeister, December 14, 2011 (sent for review December 9, 2011)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Abstract

The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.

  • coiled coils
  • mass spectrometry
  • proteasome-COP9-eIF3 domain
  • proteasome-cyclosome repeats

Footnotes

  • ↵1K.L. and F.F. contributed equally to this work.

  • ↵2To whom correspondence may be addressed. E-mail: sali{at}salilab.org or baumeist{at}biochem.mpg.de.
  • Author contributions: R.A., A.S., and W.B. designed research; K.L., F.F., S.B., T.W., E.V., and P.U. performed research; K.L., F.F., S.B., T.W., E.V., P.U., F.B., and A.S. analyzed data; and K.L., F.F., R.A., A.S., and W.B. wrote the paper.

  • This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2010.

  • The authors declare no conflict of interest.

  • Data deposition: The single particle reconstruction has been deposited in the Electron Microscopy Data Bank, http://www.ebi.ac.uk/pdbe/emdb/ (accession code 10440).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120559109/-/DCSupplemental.

Freely available online through the PNAS open access option.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
Keren Lasker, Friedrich Förster, Stefan Bohn, Thomas Walzthoeni, Elizabeth Villa, Pia Unverdorben, Florian Beck, Ruedi Aebersold, Andrej Sali, Wolfgang Baumeister
Proceedings of the National Academy of Sciences Jan 2012, 109 (5) 1380-1387; DOI: 10.1073/pnas.1120559109

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
Keren Lasker, Friedrich Förster, Stefan Bohn, Thomas Walzthoeni, Elizabeth Villa, Pia Unverdorben, Florian Beck, Ruedi Aebersold, Andrej Sali, Wolfgang Baumeister
Proceedings of the National Academy of Sciences Jan 2012, 109 (5) 1380-1387; DOI: 10.1073/pnas.1120559109
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 109 (5)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Biophysics and Computational Biology

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490