Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Electromagnetically driven westward drift and inner-core superrotation in Earth’s core

Philip W. Livermore, Rainer Hollerbach, and Andrew Jackson
  1. Schools of aEarth and Environment and
  2. bMathematics, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom; and
  3. cInstitute for Geophysics, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

See allHide authors and affiliations

PNAS October 1, 2013 110 (40) 15914-15918; https://doi.org/10.1073/pnas.1307825110
Philip W. Livermore
Schools of aEarth and Environment and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: p.w.livermore@leeds.ac.uk
Rainer Hollerbach
bMathematics, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom; and
cInstitute for Geophysics, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Jackson
cInstitute for Geophysics, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Gerald Schubert, Institute of Geophysics and Planetary Physics, Los Angeles, CA, and approved August 26, 2013 (received for review April 29, 2013)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Seismic probing of the earth’s deep interior has shown that the inner core, the solid core of our planet, rotates slightly faster (i.e., eastward) than the rest of the earth. Quite independently, observations of the geomagnetic field provide evidence of westward-drifting features at the edge of the liquid outer core. This paper describes a computer model that suggests that the geomagnetic field itself may provide a link between them: The associated electromagnetic torque currently is westward in the outermost outer core, whereas an equal and opposite torque is applied to the inner core. Decadal changes in the geomagnetic field may cause fluctuations in both these effects, consistent with recent observations of a quasi-oscillatory inner-core rotation rate.

Abstract

A 3D numerical model of the earth’s core with a viscosity two orders of magnitude lower than the state of the art suggests a link between the observed westward drift of the magnetic field and superrotation of the inner core. In our model, the axial electromagnetic torque has a dominant influence only at the surface and in the deepest reaches of the core, where it respectively drives a broad westward flow rising to an axisymmetric equatorial jet and imparts an eastward-directed torque on the solid inner core. Subtle changes in the structure of the internal magnetic field may alter not just the magnitude but the direction of these torques. This not only suggests that the quasi-oscillatory nature of inner-core superrotation [Tkalčić H, Young M, Bodin T, Ngo S, Sambridge M (2013) The shuffling rotation of the earth’s inner core revealed by earthquake doublets. Nat Geosci 6:497–502.] may be driven by decadal changes in the magnetic field, but further that historical periods in which the field exhibited eastward drift were contemporaneous with a westward inner-core rotation. The model further indicates a strong internal shear layer on the tangent cylinder that may be a source of torsional waves inside the core.

  • geomagnetism
  • geodynamo

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: p.w.livermore{at}leeds.ac.uk.
  • Author contributions: P.W.L., R.H., and A.J. designed research; P.W.L. and R.H. performed research; P.W.L. analyzed data; and P.W.L. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Electromagnetically driven westward drift and inner-core superrotation in Earth’s core
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Westward drift and inner-core superrotation
Philip W. Livermore, Rainer Hollerbach, Andrew Jackson
Proceedings of the National Academy of Sciences Oct 2013, 110 (40) 15914-15918; DOI: 10.1073/pnas.1307825110

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Westward drift and inner-core superrotation
Philip W. Livermore, Rainer Hollerbach, Andrew Jackson
Proceedings of the National Academy of Sciences Oct 2013, 110 (40) 15914-15918; DOI: 10.1073/pnas.1307825110
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Earth, Atmospheric, and Planetary Sciences
Proceedings of the National Academy of Sciences: 110 (40)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490