Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Reversible DNA methylation regulates seasonal photoperiodic time measurement

Tyler J. Stevenson and Brian J. Prendergast
  1. aInstitute for Mind and Biology and
  2. bDepartment of Psychology, University of Chicago, Chicago, IL 60637

See allHide authors and affiliations

PNAS October 8, 2013 110 (41) 16651-16656; https://doi.org/10.1073/pnas.1310643110
Tyler J. Stevenson
aInstitute for Mind and Biology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tyler.stevenson@abdn.ac.uk
Brian J. Prendergast
aInstitute for Mind and Biology and
bDepartment of Psychology, University of Chicago, Chicago, IL 60637
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved September 5, 2013 (received for review June 5, 2013)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

This work examined whether epigenetic mechanisms participate in the regulation of seasonal reproduction. In long-day (summer) breeding hamsters, exposure to inhibitory winter photoperiods, or winter-like patterns of melatonin, altered DNA methyltransferase expression; decreased DNA methylation in the proximal promoter region of deiodinase type III (dio3) in the hypothalamus; and, in turn, increased hypothalamic dio3 expression. Pharmacological blockade of photoperiod-driven demethylation attenuated reproductive responses to winter photoperiods. Winter demethylation was reversed in anticipation of spring: spontaneous reproductive development was accompanied by remethylation of the dio3 promoter and decreases in dio3 mRNA. Methylation dynamics in the adult brain are reversible and may constitute an important component of the mechanism by which seasonal time is represented in the nervous system.

Abstract

In seasonally breeding vertebrates, changes in day length induce categorically distinct behavioral and reproductive phenotypes via thyroid hormone-dependent mechanisms. Winter photoperiods inhibit reproductive neuroendocrine function but cannot sustain this inhibition beyond 6 mo, ensuring vernal reproductive recrudescence. This genomic plasticity suggests a role for epigenetics in the establishment of seasonal reproductive phenotypes. Here, we report that DNA methylation of the proximal promoter for the type III deiodinase (dio3) gene in the hamster hypothalamus is reversible and critical for photoperiodic time measurement. Short photoperiods and winter-like melatonin inhibited hypothalamic DNA methyltransferase expression and reduced dio3 promoter DNA methylation, which up-regulated dio3 expression and induced gonadal regression. Hypermethylation attenuated reproductive responses to short photoperiods. Vernal refractoriness to short photoperiods reestablished summer-like methylation of the dio3 promoter, dio3 expression, and reproductive competence, revealing a dynamic and reversible mechanism of DNA methylation in the mammalian brain that plays a central role in physiological orientation in time.

  • biological rhythms
  • photoperiodism

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: tyler.stevenson{at}abdn.ac.uk.
  • Author contributions: T.J.S. and B.J.P. designed research; T.J.S. performed research; T.J.S. and B.J.P. analyzed data; and T.J.S. and B.J.P. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. KC153107–KC153111, EU812319, and EU812320).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1310643110/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reversible DNA methylation regulates seasonal photoperiodic time measurement
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Role of methylation in seasonal rhythms
Tyler J. Stevenson, Brian J. Prendergast
Proceedings of the National Academy of Sciences Oct 2013, 110 (41) 16651-16656; DOI: 10.1073/pnas.1310643110

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Role of methylation in seasonal rhythms
Tyler J. Stevenson, Brian J. Prendergast
Proceedings of the National Academy of Sciences Oct 2013, 110 (41) 16651-16656; DOI: 10.1073/pnas.1310643110
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Physiology
Proceedings of the National Academy of Sciences: 110 (41)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490