Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function

Thomas A. Longden, Fabrice Dabertrand, David C. Hill-Eubanks, Sayamwong E. Hammack, and Mark T. Nelson
PNAS May 20, 2014 111 (20) 7462-7467; first published May 7, 2014; https://doi.org/10.1073/pnas.1401811111
Thomas A. Longden
Departments of aPharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fabrice Dabertrand
Departments of aPharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David C. Hill-Eubanks
Departments of aPharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sayamwong E. Hammack
bPsychology, University of Vermont, Burlington, VT 05405; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark T. Nelson
Departments of aPharmacology and
cInstitute of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Mark.Nelson@uvm.edu
  1. Edited by Richard W. Aldrich, The University of Texas at Austin, Austin, TX, and approved April 11, 2014 (received for review January 29, 2014)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

When neurons become active, they signal to local arterioles via intermediate glial cells, called astrocytes, to evoke dilation. This increases local blood flow and provides the oxygen and glucose necessary to support ongoing neuronal function. This process is termed neurovascular coupling. We demonstrate that chronic stress—which is a contributing factor for many diseases—impairs neurovascular coupling in the amygdala, a region involved in stressor processing. Our results further indicate that this dysfunction is due to the loss of arteriolar inwardly rectifying potassium (K+) channel function, which makes vessels less able to respond to vasodilatory K+ ions released by astrocytes during periods of increased neuronal activity. This neurovascular coupling impairment may contribute to the pathology of a range of brain disorders.

Abstract

Studies of stress effects on the brain have traditionally focused on neurons, without considering the cerebral microcirculation. Here we report that stress impairs neurovascular coupling (NVC), the process that matches neuronal activity with increased local blood flow. A stressed phenotype was induced in male rats by administering a 7-d heterotypical stress paradigm. NVC was modeled by measuring parenchymal arteriole (PA) vasodilation in response to neuronal stimulation in amygdala brain slices. After stress, vasodilation of PAs to neuronal stimulation was greatly reduced, and dilation of isolated PAs to external K+ was diminished, suggesting a defect in smooth muscle inwardly rectifying K+ (KIR) channel function. Consistent with these observations, stress caused a reduction in PA KIR2.1 mRNA and smooth muscle KIR current density, and blocking KIR channels significantly inhibited NVC in control, but not in stressed, slices. Delivery of corticosterone for 7 d (without stressors) or RU486 (before stressors) mimicked and abrogated NVC impairment by stress, respectively. We conclude that stress causes a glucocorticoid-mediated decrease in functional KIR channels in amygdala PA myocytes. This renders arterioles less responsive to K+ released from astrocytic endfeet during NVC, leading to impairment of this process. Because the fidelity of NVC is essential for neuronal health, the impairment characterized here may contribute to the pathophysiology of brain disorders with a stress component.

  • chronic stress
  • limbic system
  • neurovascular unit
  • potassium channels

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: Mark.Nelson{at}uvm.edu.
  • Author contributions: T.A.L., S.E.H., and M.T.N. designed research; T.A.L. and F.D. performed research; T.A.L. analyzed data; and T.A.L., D.C.H.-E., S.E.H., and M.T.N. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1401811111/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Stress remodels neurovascular coupling
Thomas A. Longden, Fabrice Dabertrand, David C. Hill-Eubanks, Sayamwong E. Hammack, Mark T. Nelson
Proceedings of the National Academy of Sciences May 2014, 111 (20) 7462-7467; DOI: 10.1073/pnas.1401811111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Stress remodels neurovascular coupling
Thomas A. Longden, Fabrice Dabertrand, David C. Hill-Eubanks, Sayamwong E. Hammack, Mark T. Nelson
Proceedings of the National Academy of Sciences May 2014, 111 (20) 7462-7467; DOI: 10.1073/pnas.1401811111
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 111 (20)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Neuroscience

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490