Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G

Evangelos Papadopoulos, Simon Jenni, Eihab Kabha, Khuloud J. Takrouri, Tingfang Yi, Nicola Salvi, Rafael E. Luna, Evripidis Gavathiotis, Poornachandran Mahalingam, Haribabu Arthanari, Ricard Rodriguez-Mias, Revital Yefidoff-Freedman, Bertal H. Aktas, Michael Chorev, Jose A. Halperin, and Gerhard Wagner
PNAS August 5, 2014 111 (31) E3187-E3195; first published July 21, 2014; https://doi.org/10.1073/pnas.1410250111
Evangelos Papadopoulos
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simon Jenni
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eihab Kabha
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
bLaboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Khuloud J. Takrouri
bLaboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139;
cDepartment of Medicine, Brigham and Women's Hospital, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tingfang Yi
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicola Salvi
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rafael E. Luna
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Evripidis Gavathiotis
dDepartment of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215;
eJack and Pearl Resnick Campus, Albert Einstein College of Medicine, Bronx, NY 10461; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Poornachandran Mahalingam
bLaboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139;
fRowland Institute, Harvard University, Cambridge, MA 02142
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haribabu Arthanari
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ricard Rodriguez-Mias
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Revital Yefidoff-Freedman
bLaboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139;
cDepartment of Medicine, Brigham and Women's Hospital, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bertal H. Aktas
bLaboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Chorev
bLaboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jose A. Halperin
bLaboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerhard Wagner
aDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gerhard_wagner@hms.harvard.edu
  1. Contributed by Gerhard Wagner, June 13, 2014 (sent for review March 29, 2014)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

eIF4E is critical for protein synthesis and becomes hyperactive in cancer cells. Small-molecule inhibitors of the eIF4E/eIF4G initiation factor complex have recently been found to exhibit antitumor activity in vitro and in vivo. However, their mode of action at the atomic level has remained elusive. Here, we report high-resolution crystal structures of complexes of 4EGI-1 analogue inhibitors with eIF4E. We find that inhibition of eIF4G binding must be allosteric, because the 4EGI-1 and eIF4G bind at distant epitopes on eIF4E. Compound binding induces extension of an α-helix that stretches between the two binding sites. Indeed, mutations increasing helix propensity in this region reduce eIF4G affinity in the absence of the inhibitor, which is consistent with the proposed allosteric model.

Abstract

The interaction of the eukaryotic translation initiation factor eIF4E with the initiation factor eIF4G recruits the 40S ribosomal particle to the 5′ end of mRNAs, facilitates scanning to the AUG start codon, and is crucial for eukaryotic translation of nearly all genes. Efficient recruitment of the 40S particle is particularly important for translation of mRNAs encoding oncoproteins and growth-promoting factors, which often harbor complex 5′ UTRs and require efficient initiation. Thus, inhibiting the eIF4E/eIF4G interaction has emerged as a previously unpursued route for developing anticancer agents. Indeed, we discovered small-molecule inhibitors of this eIF4E/eIF4G interaction (4EGIs) that inhibit translation initiation both in vitro and in vivo and were used successfully in numerous cancer–biology and neurobiology studies. However, their detailed molecular mechanism of action has remained elusive. Here, we show that the eIF4E/eIF4G inhibitor 4EGI-1 acts allosterically by binding to a site on eIF4E distant from the eIF4G binding epitope. Data from NMR mapping and high-resolution crystal structures are congruent with this mechanism, where 4EGI-1 attaches to a hydrophobic pocket of eIF4E between β-sheet2 (L60-T68) and α-helix1 (E69-N77), causing localized conformational changes mainly in the H78-L85 region. It acts by unfolding a short 310-helix (S82-L85) while extending α-helix1 by one turn (H78-S82). This unusual helix rearrangement has not been seen in any previous eIF4E structure and reveals elements of an allosteric inhibition mechanism leading to the dislocation of eIF4G from eIF4E.

  • allosteric inhibitor
  • NMR spectroscopy
  • inhibitor of protein–protein interaction

Footnotes

  • ↵1To whom correspondence should be addressed. Email: gerhard_wagner{at}hms.harvard.edu.
  • Author contributions: E.P., B.H.A., M.C., J.A.H., and G.W. designed research; E.P., S.J., N.S., and R.R.-M. performed research; E.K., K.J.T., T.Y., R.E.L., E.G., P.M., H.A., and R.Y.-F. contributed new reagents/analytic tools; E.P., S.J., and E.G. analyzed data; and E.P., R.E.L., and G.W. wrote the paper.

  • The authors declare no conflict of interest.

  • Data deposition: The crystallography, atomic coordinates, and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID codes 4TPW, 4TQB, and 4TQC).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410250111/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Allosteric eIF4E/eIF4G inhibition by 4EGI-1
Evangelos Papadopoulos, Simon Jenni, Eihab Kabha, Khuloud J. Takrouri, Tingfang Yi, Nicola Salvi, Rafael E. Luna, Evripidis Gavathiotis, Poornachandran Mahalingam, Haribabu Arthanari, Ricard Rodriguez-Mias, Revital Yefidoff-Freedman, Bertal H. Aktas, Michael Chorev, Jose A. Halperin, Gerhard Wagner
Proceedings of the National Academy of Sciences Aug 2014, 111 (31) E3187-E3195; DOI: 10.1073/pnas.1410250111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Allosteric eIF4E/eIF4G inhibition by 4EGI-1
Evangelos Papadopoulos, Simon Jenni, Eihab Kabha, Khuloud J. Takrouri, Tingfang Yi, Nicola Salvi, Rafael E. Luna, Evripidis Gavathiotis, Poornachandran Mahalingam, Haribabu Arthanari, Ricard Rodriguez-Mias, Revital Yefidoff-Freedman, Bertal H. Aktas, Michael Chorev, Jose A. Halperin, Gerhard Wagner
Proceedings of the National Academy of Sciences Aug 2014, 111 (31) E3187-E3195; DOI: 10.1073/pnas.1410250111
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 111 (31)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Biochemistry

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Surgeons hands during surgery
Inner Workings: Advances in infectious disease treatment promise to expand the pool of donor organs
Despite myriad challenges, clinicians see room for progress.
Image credit: Shutterstock/David Tadevosian.
Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Double helix
Journal Club: Noncoding DNA shown to underlie function, cause limb malformations
Using CRISPR, researchers showed that a region some used to label “junk DNA” has a major role in a rare genetic disorder.
Image credit: Nathan Devery.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490