Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Human population reduction is not a quick fix for environmental problems

Corey J. A. Bradshaw and Barry W. Brook
  1. The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

See allHide authors and affiliations

PNAS November 18, 2014 111 (46) 16610-16615; first published October 27, 2014; https://doi.org/10.1073/pnas.1410465111
Corey J. A. Bradshaw
The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: corey.bradshaw@adelaide.edu.au
Barry W. Brook
The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Paul R. Ehrlich, Stanford University, Stanford, CA, and approved September 15, 2014 (received for review June 5, 2014)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

The planet’s large, growing, and overconsuming human population, especially the increasing affluent component, is rapidly eroding many of the Earth’s natural ecosystems. However, society’s only real policy lever to reduce the human population humanely is to encourage lower per capita fertility. How long might fertility reduction take to make a meaningful impact? We examined various scenarios for global human population change to the year 2100 by adjusting fertility and mortality rates (both chronic and short-term interventions) to determine the plausible range of outcomes. Even one-child policies imposed worldwide and catastrophic mortality events would still likely result in 5–10 billion people by 2100. Because of this demographic momentum, there are no easy ways to change the broad trends of human population size this century.

Abstract

The inexorable demographic momentum of the global human population is rapidly eroding Earth’s life-support system. There are consequently more frequent calls to address environmental problems by advocating further reductions in human fertility. To examine how quickly this could lead to a smaller human population, we used scenario-based matrix modeling to project the global population to the year 2100. Assuming a continuation of current trends in mortality reduction, even a rapid transition to a worldwide one-child policy leads to a population similar to today’s by 2100. Even a catastrophic mass mortality event of 2 billion deaths over a hypothetical 5-y window in the mid-21st century would still yield around 8.5 billion people by 2100. In the absence of catastrophe or large fertility reductions (to fewer than two children per female worldwide), the greatest threats to ecosystems—as measured by regional projections within the 35 global Biodiversity Hotspots—indicate that Africa and South Asia will experience the greatest human pressures on future ecosystems. Humanity’s large demographic momentum means that there are no easy policy levers to change the size of the human population substantially over coming decades, short of extreme and rapid reductions in female fertility; it will take centuries, and the long-term target remains unclear. However, some reduction could be achieved by midcentury and lead to hundreds of millions fewer people to feed. More immediate results for sustainability would emerge from policies and technologies that reverse rising consumption of natural resources.

  • demography
  • fertility
  • catastrophe
  • war
  • mortality

Footnotes

  • ↵1To whom correspondence should be addressed. Email: corey.bradshaw{at}adelaide.edu.au.
  • Author contributions: C.J.A.B. and B.W.B. designed research; C.J.A.B. and B.W.B. performed research; B.W.B. contributed new reagents/analytic tools; C.J.A.B. analyzed data; and C.J.A.B. and B.W.B. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • Data deposition: Data available from the Aekos Data Portal, www.aekos.org.au (dx.doi.org/10.4227/05/53869A9434A46).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410465111/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Human population reduction is not a quick fix for environmental problems
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
No quick fix to reduce human population size
Corey J. A. Bradshaw, Barry W. Brook
Proceedings of the National Academy of Sciences Nov 2014, 111 (46) 16610-16615; DOI: 10.1073/pnas.1410465111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
No quick fix to reduce human population size
Corey J. A. Bradshaw, Barry W. Brook
Proceedings of the National Academy of Sciences Nov 2014, 111 (46) 16610-16615; DOI: 10.1073/pnas.1410465111
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Biological Sciences
  • Population Biology

This article has Letters. Please see:

  • Relationship between Research Article and Letter - January 23, 2015
  • Relationship between Research Article and Letter - January 23, 2015
  • Relationship between Research Article and Letter - April 06, 2015

See related content:

  • Humans are too many to reduce quickly
    - Jan 23, 2015
Proceedings of the National Academy of Sciences: 111 (46)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Setting sun over a sun-baked dirt landscape
Core Concept: Popular integrated assessment climate policy models have key caveats
Better explicating the strengths and shortcomings of these models will help refine projections and improve transparency in the years ahead.
Image credit: Witsawat.S.
Model of the Amazon forest
News Feature: A sea in the Amazon
Did the Caribbean sweep into the western Amazon millions of years ago, shaping the region’s rich biodiversity?
Image credit: Tacio Cordeiro Bicudo (University of São Paulo, São Paulo, Brazil), Victor Sacek (University of São Paulo, São Paulo, Brazil), and Lucy Reading-Ikkanda (artist).
Syrian archaeological site
Journal Club: In Mesopotamia, early cities may have faltered before climate-driven collapse
Settlements 4,200 years ago may have suffered from overpopulation before drought and lower temperatures ultimately made them unsustainable.
Image credit: Andrea Ricci.
Steamboat Geyser eruption.
Eruption of Steamboat Geyser
Mara Reed and Michael Manga explore why Yellowstone's Steamboat Geyser resumed erupting in 2018.
Listen
Past PodcastsSubscribe
Birds nestling on tree branches
Parent–offspring conflict in songbird fledging
Some songbird parents might improve their own fitness by manipulating their offspring into leaving the nest early, at the cost of fledgling survival, a study finds.
Image credit: Gil Eckrich (photographer).

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490