Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Equitability, mutual information, and the maximal information coefficient

Justin B. Kinney and Gurinder S. Atwal
  1. Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724

See allHide authors and affiliations

PNAS March 4, 2014 111 (9) 3354-3359; https://doi.org/10.1073/pnas.1309933111
Justin B. Kinney
Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jkinney@cshl.edu
Gurinder S. Atwal
Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited* by David L. Donoho, Stanford University, Stanford, CA, and approved January 21, 2014 (received for review May 24, 2013)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Attention has recently focused on a basic yet unresolved problem in statistics: How can one quantify the strength of a statistical association between two variables without bias for relationships of a specific form? Here we propose a way of mathematically formalizing this “equitability” criterion, using core concepts from information theory. This criterion is naturally satisfied by a fundamental information-theoretic measure of dependence called “mutual information.” By contrast, a recently introduced dependence measure called the “maximal information coefficient” is seen to violate equitability. We conclude that estimating mutual information provides a natural and practical method for equitably quantifying associations in large datasets.

Abstract

How should one quantify the strength of association between two random variables without bias for relationships of a specific form? Despite its conceptual simplicity, this notion of statistical “equitability” has yet to receive a definitive mathematical formalization. Here we argue that equitability is properly formalized by a self-consistency condition closely related to Data Processing Inequality. Mutual information, a fundamental quantity in information theory, is shown to satisfy this equitability criterion. These findings are at odds with the recent work of Reshef et al. [Reshef DN, et al. (2011) Science 334(6062):1518–1524], which proposed an alternative definition of equitability and introduced a new statistic, the “maximal information coefficient” (MIC), said to satisfy equitability in contradistinction to mutual information. These conclusions, however, were supported only with limited simulation evidence, not with mathematical arguments. Upon revisiting these claims, we prove that the mathematical definition of equitability proposed by Reshef et al. cannot be satisfied by any (nontrivial) dependence measure. We also identify artifacts in the reported simulation evidence. When these artifacts are removed, estimates of mutual information are found to be more equitable than estimates of MIC. Mutual information is also observed to have consistently higher statistical power than MIC. We conclude that estimating mutual information provides a natural (and often practical) way to equitably quantify statistical associations in large datasets.

Footnotes

  • ↵1To whom correspondence should be addressed. E-mail: jkinney{at}cshl.edu.
  • Author contributions: J.B.K. and G.S.A. designed research, performed research, and wrote the paper.

  • The authors declare no conflict of interest.

  • ↵*This Direct Submission article had a prearranged editor.

  • Data deposition: All analysis code reported in this paper have been deposited in the SourceForge database at https://sourceforge.net/projects/equitability/.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1309933111/-/DCSupplemental.

Freely available online through the PNAS open access option.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Equitability, mutual information, and the maximal information coefficient
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Equitability, mutual information, and MIC
Justin B. Kinney, Gurinder S. Atwal
Proceedings of the National Academy of Sciences Mar 2014, 111 (9) 3354-3359; DOI: 10.1073/pnas.1309933111

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Equitability, mutual information, and MIC
Justin B. Kinney, Gurinder S. Atwal
Proceedings of the National Academy of Sciences Mar 2014, 111 (9) 3354-3359; DOI: 10.1073/pnas.1309933111
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Statistics

This article has Letters. Please see:

  • Relationship between Research Article and Letter - April 29, 2014
  • Relationship between Research Article and Letter - August 19, 2014

See related content:

  • Reply to Murrell et al.
    - Apr 29, 2014
  • Falsifiability or bust
    - Aug 19, 2014
Proceedings of the National Academy of Sciences: 111 (9)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Reflection of clouds in the still waters of Mono Lake in California.
Inner Workings: Making headway with the mysteries of life’s origins
Recent experiments and simulations are starting to answer some fundamental questions about how life came to be.
Image credit: Shutterstock/Radoslaw Lecyk.
Cave in coastal Kenya with tree growing in the middle.
Journal Club: Small, sharp blades mark shift from Middle to Later Stone Age in coastal Kenya
Archaeologists have long tried to define the transition between the two time periods.
Image credit: Ceri Shipton.
Mouse fibroblast cells. Electron bifurcation reactions keep mammalian cells alive.
Exploring electron bifurcation
Jonathon Yuly, David Beratan, and Peng Zhang investigate how electron bifurcation reactions work.
Listen
Past PodcastsSubscribe
Panda bear hanging in a tree
How horse manure helps giant pandas tolerate cold
A study finds that giant pandas roll in horse manure to increase their cold tolerance.
Image credit: Fuwen Wei.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490