New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Amplified Arctic warming by phytoplankton under greenhouse warming
Edited by Christopher J. R. Garrett, University of Victoria, Victoria, BC, Canada, and approved March 27, 2015 (received for review September 1, 2014)

Significance
One of the important impacts of marine phytoplankton on climate systems is the geophysical feedback by which chlorophyll and the related pigments in phytoplankton absorb solar radiation and then change sea surface temperature. Yet such biogeophysical impact is still not considered in many climate projections by state-of-the-art climate models, nor is its impact on the future climate quantified. This study shows that, by conducting global warming simulations with and without an active marine ecosystem model, the biogeophysical effect of future phytoplankton changes amplifies Arctic warming by 20%. Given the close linkage between the Arctic and global climate, the biologically enhanced Arctic warming can significantly modify future estimates of global climate change, and therefore it needs to be considered as a possible future scenario.
Abstract
Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.
Footnotes
- ↵1To whom correspondence should be addressed. Email: jskug1{at}gmail.com.
Author contributions: J.-S.K. and M.K. designed research; J.-Y.P. and R.R. performed research; J.-Y.P. analyzed data; and J.-Y.P., J.-S.K., J.B., and R.R. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1416884112/-/DCSupplemental.
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Physical Sciences
- Earth, Atmospheric, and Planetary Sciences