Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

The two-domain tree of life is linked to a new root for the Archaea

Kasie Raymann, Céline Brochier-Armanet, and Simonetta Gribaldo
PNAS May 26, 2015 112 (21) 6670-6675; published ahead of print May 11, 2015 https://doi.org/10.1073/pnas.1420858112
Kasie Raymann
aInstitut Pasteur, Department of Microbiology, Unit Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Céline Brochier-Armanet
bUniversité de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simonetta Gribaldo
aInstitut Pasteur, Department of Microbiology, Unit Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: simonetta.gribaldo@pasteur.fr
  1. Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved April 17, 2015 (received for review November 02, 2014)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

An archaeal origin for eukaryotes is an exciting recent finding. Nevertheless, it has been based largely on the reconstruction of universal trees. The use of an alternative strategy based on markers shared between Archaea and eukaryotes and Archaea and Bacteria bypasses potential problems linked to the analysis of the three domains simultaneously. Comparison of the phylogenies obtained by these two complementary sets of markers supports a sister relationship between eukaryotes and the Thaumarchaeota/“Aigarchaeota” (candidate phylum)/Crenarchaeota/Korarchaeota lineage but also robustly indicates a root of the tree of Archaea that challenges the traditional topology of this domain. This sensibly changes our perspective of the ancient evolution of the Archaea, early life, and Earth.

Abstract

One of the most fundamental questions in evolutionary biology is the origin of the lineage leading to eukaryotes. Recent phylogenomic analyses have indicated an emergence of eukaryotes from within the radiation of modern Archaea and specifically from a group comprising Thaumarchaeota/“Aigarchaeota” (candidate phylum)/Crenarchaeota/Korarchaeota (TACK). Despite their major implications, these studies were all based on the reconstruction of universal trees and left the exact placement of eukaryotes with respect to the TACK lineage unclear. Here we have applied an original two-step approach that involves the separate analysis of markers shared between Archaea and eukaryotes and between Archaea and Bacteria. This strategy allowed us to use a larger number of markers and greater taxonomic coverage, obtain high-quality alignments, and alleviate tree reconstruction artifacts potentially introduced when analyzing the three domains simultaneously. Our results robustly indicate a sister relationship of eukaryotes with the TACK superphylum that is strongly associated with a distinct root of the Archaea that lies within the Euryarchaeota, challenging the traditional topology of the archaeal tree. Therefore, if we are to embrace an archaeal origin for eukaryotes, our view of the evolution of the third domain of life will have to be profoundly reconsidered, as will many areas of investigation aimed at inferring ancestral characteristics of early life and Earth.

  • methanogenesis
  • Tree of Life
  • ancient evolution
  • site-heterogeneous model
  • archaeal phylogeny

Footnotes

  • ↵1To whom correspondence should be addressed. Email: simonetta.gribaldo{at}pasteur.fr.
  • Author contributions: C.B.-A. and S.G. designed research; K.R. performed research; K.R., C.B.-A., and S.G. analyzed data; and K.R., C.B.-A., and S.G. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1420858112/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The two-domain tree of life is linked to a new root for the Archaea
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Eukaryotic origins and the roots of Archaea
Kasie Raymann, Céline Brochier-Armanet, Simonetta Gribaldo
Proceedings of the National Academy of Sciences May 2015, 112 (21) 6670-6675; DOI: 10.1073/pnas.1420858112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Eukaryotic origins and the roots of Archaea
Kasie Raymann, Céline Brochier-Armanet, Simonetta Gribaldo
Proceedings of the National Academy of Sciences May 2015, 112 (21) 6670-6675; DOI: 10.1073/pnas.1420858112
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (7)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Core Concept: Solving Peto’s Paradox to better understand cancer
Several large or long-lived animals seem strangely resistant to developing cancer. Elucidating the reasons why could lead to promising cancer-fighting strategies in humans.
Image credit: Shutterstock.com/ronnybas frimages.
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Biological Sciences

  • Structural basis for activity of TRIC counter-ion channels in calcium release
  • PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin
  • Altered neural odometry in the vertical dimension
Show more

Evolution

  • Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids
  • Transitions between foot postures are associated with elevated rates of body size evolution in mammals
  • Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny
Show more

Related Content

  • No related articles found.
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes
  • Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life
  • The Physiology of Phagocytosis in the Context of Mitochondrial Origin
  • Integrative modeling of gene and genome evolution roots the archaeal tree of life
  • Lineage-specific proteins essential for endocytosis in trypanosomes
  • Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes
  • The changing view of eukaryogenesis - fossils, cells, lineages and how they all come together
  • Early Microbial Evolution: The Age of Anaerobes
  • Scopus (101)
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490