Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

Rodent reservoirs of future zoonotic diseases

Barbara A. Han, John Paul Schmidt, Sarah E. Bowden, and John M. Drake
PNAS June 2, 2015 112 (22) 7039-7044; first published May 18, 2015; https://doi.org/10.1073/pnas.1501598112
Barbara A. Han
aCary Institute of Ecosystem Studies, Millbrook, NY 12545; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: hanb@caryinstitute.org
John Paul Schmidt
bOdum School of Ecology, University of Georgia, Athens, GA 30602
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah E. Bowden
bOdum School of Ecology, University of Georgia, Athens, GA 30602
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John M. Drake
bOdum School of Ecology, University of Georgia, Athens, GA 30602
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved April 20, 2015 (received for review February 10, 2015)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Forecasting reservoirs of zoonotic disease is a pressing public health priority. We apply machine learning to datasets describing the biological, ecological, and life history traits of rodents, which collectively carry a disproportionate number of zoonotic pathogens. We identify particular rodent species predicted to be novel zoonotic reservoirs and geographic regions from which new emerging pathogens are most likely to arise. We also describe trait profiles—complexes of biological features—that distinguish reservoirs from nonreservoirs. Generally, the most permissive rodent reservoirs display a fast-paced life history strategy, maximizing near-term fitness by having many altricial young that begin reproduction early and reproduce frequently. These findings may constitute an important lead in guiding the search for novel disease reservoirs in the wild.

Abstract

The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States.

  • machine learning
  • disease forecasting
  • prediction
  • pace-of-life hypothesis
  • generalized boosted regression trees

Footnotes

  • ↵1To whom correspondence should be addressed. Email: hanb{at}caryinstitute.org.
  • Author contributions: B.A.H. and J.M.D. designed research; B.A.H., J.P.S., S.E.B., and J.M.D. performed research; S.E.B. contributed new reagents/analytic tools; B.A.H. and J.P.S. analyzed data; and B.A.H., J.P.S., S.E.B., and J.M.D. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • Data deposition: The data reported in this paper have been deposited in the Dryad Digital Repository, datadryad.org (DOI no. 10.5061/dryad.7fh4q).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1501598112/-/DCSupplemental.

Freely available online through the PNAS open access option.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Rodent reservoirs of future zoonotic diseases
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Rodent reservoirs of future zoonotic diseases
Barbara A. Han, John Paul Schmidt, Sarah E. Bowden, John M. Drake
Proceedings of the National Academy of Sciences Jun 2015, 112 (22) 7039-7044; DOI: 10.1073/pnas.1501598112

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Rodent reservoirs of future zoonotic diseases
Barbara A. Han, John Paul Schmidt, Sarah E. Bowden, John M. Drake
Proceedings of the National Academy of Sciences Jun 2015, 112 (22) 7039-7044; DOI: 10.1073/pnas.1501598112
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 112 (22)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Ecology

Jump to section

  • Article
    • Abstract
    • Results and Discussion
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490