Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

COP1 is required for UV-B–induced nuclear accumulation of the UVR8 photoreceptor

View ORCID ProfileRuohe Yin, Mariya Y. Skvortsova, Sylvain Loubéry, and View ORCID ProfileRoman Ulm
PNAS July 26, 2016 113 (30) E4415-E4422; first published July 12, 2016; https://doi.org/10.1073/pnas.1607074113
Ruohe Yin
aDepartment of Botany and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ruohe Yin
Mariya Y. Skvortsova
aDepartment of Botany and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sylvain Loubéry
aDepartment of Botany and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roman Ulm
aDepartment of Botany and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland;
bInstitute of Genetics and Genomics of Geneva, University of Geneva, CH-1211 Geneva 4, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Roman Ulm
  • For correspondence: roman.ulm@unige.ch
  1. Edited by Natasha V. Raikhel, Center for Plant Cell Biology, Riverside, CA, and approved June 14, 2016 (received for review May 7, 2016)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Plant tissues are resistant to the potentially damaging UV-B radiation intrinsic to sunlight. UV-B photoreception by a UV RESISTANCE LOCUS 8 (UVR8) photoreceptor regulates gene expression in plants associated with UV-B acclimation and stress tolerance and with morphological changes. Mechanistically, UV-B photon reception by specific tryptophan residues of UVR8 homodimers results in monomerization and enhanced nuclear accumulation of UVR8. Active UVR8 monomers interact with the key signaling protein CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). This UV-B–dependent interaction is a crucial step in signal propagation, but the link between this mechanism and UVR8 nuclear accumulation and gene expression remains ill defined. Our results emphasize the importance of nuclear-localized UVR8 and highlight a previously unknown activity of COP1 in mediating UVR8 nuclear accumulation in response to UV-B.

Abstract

The UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) promotes UV-B acclimation and tolerance in Arabidopsis thaliana. UVR8 localizes to both cytosol and nucleus, but its main activity is assumed to be nuclear. UV-B photoreception stimulates nuclear accumulation of UVR8 in a presently unknown manner. Here, we show that CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is required for UV-B–induced nuclear accumulation of UVR8, but bypassing the COP1 requirement for UVR8 nuclear accumulation did not rescue the cop1 mutant UV-B phenotype. Using a glucocorticoid receptor (GR)-based fusion protein system to conditionally localize GR-UVR8 to the nucleus, we have demonstrated that both photoactivation and nuclear localization of UVR8 are required for UV-B–induced photomorphogenic responses. In contrast, there was no UV-B response when UV-B–activated UVR8 was artificially retained in the cytosol. In agreement with a predominantly nuclear activity, constitutively active UVR8W285A accumulated in the nucleus also in the absence of UV-B. Furthermore, GR-COP1 expression lines suggested that UV-B–activated UVR8 can be coimported into the nucleus by COP1. Our data strongly support localization of UVR8 signaling in the nucleus and a dual role for COP1 in the regulation of UV-B–induced UVR8 nuclear accumulation and in UVR8-mediated UV-B signaling.

  • nuclear accumulation
  • UV-B photoreceptor
  • COP1
  • glucocorticoid receptor
  • UVR8

Footnotes

  • ↵1To whom correspondence should be addressed. Email: roman.ulm{at}unige.ch.
  • Author contributions: R.Y. and R.U. designed research; R.Y., M.Y.S., and S.L. performed research; R.Y., M.Y.S., S.L., and R.U. analyzed data; and R.Y. and R.U. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1607074113/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
COP1 is required for UV-B–induced nuclear accumulation of the UVR8 photoreceptor
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
UVR8 nuclear accumulation requires COP1
Ruohe Yin, Mariya Y. Skvortsova, Sylvain Loubéry, Roman Ulm
Proceedings of the National Academy of Sciences Jul 2016, 113 (30) E4415-E4422; DOI: 10.1073/pnas.1607074113

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
UVR8 nuclear accumulation requires COP1
Ruohe Yin, Mariya Y. Skvortsova, Sylvain Loubéry, Roman Ulm
Proceedings of the National Academy of Sciences Jul 2016, 113 (30) E4415-E4422; DOI: 10.1073/pnas.1607074113
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 113 (30)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Plant Biology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Scientist looking at an electronic tablet
Opinion: Standardizing gene product nomenclature—a call to action
Biomedical communities and journals need to standardize nomenclature of gene products to enhance accuracy in scientific and public communication.
Image credit: Shutterstock/greenbutterfly.
One red and one yellow modeled protein structures
Journal Club: Study reveals evolutionary origins of fold-switching protein
Shapeshifting designs could have wide-ranging pharmaceutical and biomedical applications in coming years.
Image credit: Acacia Dishman/Medical College of Wisconsin.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490