Skip to main content

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home
  • Log in
  • My Cart

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
    • Front Matter Portal
    • Journal Club
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
Research Article

Impact of anthropogenic climate change on wildfire across western US forests

View ORCID ProfileJohn T. Abatzoglou and A. Park Williams
  1. aDepartment of Geography, University of Idaho, Moscow, ID 83844;
  2. bLamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964

See allHide authors and affiliations

PNAS October 18, 2016 113 (42) 11770-11775; first published October 10, 2016; https://doi.org/10.1073/pnas.1607171113
John T. Abatzoglou
aDepartment of Geography, University of Idaho, Moscow, ID 83844;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John T. Abatzoglou
  • For correspondence: jabatzoglou@uidaho.edu
A. Park Williams
bLamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Monica G. Turner, University of Wisconsin–Madison, Madison, WI, and approved July 28, 2016 (received for review May 5, 2016)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Increased forest fire activity across the western United States in recent decades has contributed to widespread forest mortality, carbon emissions, periods of degraded air quality, and substantial fire suppression expenditures. Although numerous factors aided the recent rise in fire activity, observed warming and drying have significantly increased fire-season fuel aridity, fostering a more favorable fire environment across forested systems. We demonstrate that human-caused climate change caused over half of the documented increases in fuel aridity since the 1970s and doubled the cumulative forest fire area since 1984. This analysis suggests that anthropogenic climate change will continue to chronically enhance the potential for western US forest fire activity while fuels are not limiting.

Abstract

Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000–2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984–2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.

  • wildfire
  • climate change
  • attribution
  • forests

Footnotes

  • ↵1To whom correspondence should be addressed. Email: jabatzoglou{at}uidaho.edu.
  • Author contributions: J.T.A. and A.P.W. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • See Commentary on page 11649.

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1607171113/-/DCSupplemental.

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of anthropogenic climate change on wildfire across western US forests
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Climate change has added to western US forest fire
John T. Abatzoglou, A. Park Williams
Proceedings of the National Academy of Sciences Oct 2016, 113 (42) 11770-11775; DOI: 10.1073/pnas.1607171113

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Climate change has added to western US forest fire
John T. Abatzoglou, A. Park Williams
Proceedings of the National Academy of Sciences Oct 2016, 113 (42) 11770-11775; DOI: 10.1073/pnas.1607171113
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley

Article Classifications

  • Physical Sciences
  • Earth, Atmospheric, and Planetary Sciences

See related content:

  • Human-caused climate change drives forest fires
    - Oct 10, 2016
Proceedings of the National Academy of Sciences: 113 (42)
Table of Contents

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Conclusions
    • Methods
    • Fuel Aridity Metrics
    • Fire Data
    • Climate Models
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Smoke emanates from Japan’s Fukushima nuclear power plant a few days after tsunami damage
Core Concept: Muography offers a new way to see inside a multitude of objects
Muons penetrate much further than X-rays, they do essentially zero damage, and they are provided for free by the cosmos.
Image credit: Science Source/Digital Globe.
Water from a faucet fills a glass.
News Feature: How “forever chemicals” might impair the immune system
Researchers are exploring whether these ubiquitous fluorinated molecules might worsen infections or hamper vaccine effectiveness.
Image credit: Shutterstock/Dmitry Naumov.
Venus flytrap captures a fly.
Journal Club: Venus flytrap mechanism could shed light on how plants sense touch
One protein seems to play a key role in touch sensitivity for flytraps and other meat-eating plants.
Image credit: Shutterstock/Kuttelvaserova Stuchelova.
Illustration of groups of people chatting
Exploring the length of human conversations
Adam Mastroianni and Daniel Gilbert explore why conversations almost never end when people want them to.
Listen
Past PodcastsSubscribe
Horse fossil
Mounted horseback riding in ancient China
A study uncovers early evidence of equestrianism in ancient China.
Image credit: Jian Ma.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Subscribers
  • Librarians
  • Press
  • Cozzarelli Prize
  • Site Map
  • PNAS Updates
  • FAQs
  • Accessibility Statement
  • Rights & Permissions
  • About
  • Contact

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490