New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions
Edited by John H. Seinfeld, California Institute of Technology, Pasadena, CA, and approved October 14, 2016 (received for review August 1, 2016)

Significance
Atmospheric aerosol concentration is linked to cloud brightness and lifetime through the modulation of precipitation. Generally speaking, larger cloud droplets and wider-droplet size distributions form precipitation more efficiently. We create steady-state clouds in the laboratory through a balance of constant aerosol injection and cloud-droplet removal due to settling. As aerosol concentration is decreased, the cloud-droplet mean diameter increases, as expected, but also the width of the size distribution increases sharply. Theory, simulations, and measurements point to greater supersaturation variability as the cause of this broadening in what can be considered a low aerosol/slow microphysics limit.
Abstract
The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (
Footnotes
- ↵1To whom correspondence should be addressed. Email: rashaw{at}mtu.edu.
Author contributions: K.K.C., W.C., K.C., D.C., D.N., and R.A.S. designed research; K.K.C., K.C., D.C., D.N., M.O., and F.Y. performed research; M.O. and F.Y. performed simulations; K.K.C., W.C., R.A.S., and F.Y. analyzed data; and K.K.C. and R.A.S. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1612686113/-/DCSupplemental.
Citation Manager Formats
Sign up for Article Alerts
Jump to section
You May Also be Interested in
More Articles of This Classification
Physical Sciences
Earth, Atmospheric, and Planetary Sciences
Related Content
- No related articles found.
Cited by...
- No citing articles found.