New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Geophysical potential for wind energy over the open oceans
Edited by Kerry A. Emanuel, Massachusetts Institute of Technology, Cambridge, MA, and approved August 30, 2017 (received for review April 5, 2017)
This article has a Correction. Please see:

Significance
Wind speeds over open ocean areas are often higher than those in the windiest areas over land, which has motivated a quest to develop technologies that could harvest wind energy in deep water environments. However, it remains unclear whether these open ocean wind speeds are higher because of lack of surface drag or whether a greater downward transport of kinetic energy may be sustained in open ocean environments. Focusing on the North Atlantic region, we provide evidence that there is potential for greater downward transport of kinetic energy in the overlying atmosphere. As a result, wind power generation over some ocean areas can exceed power generation on land by a factor of three or more.
Abstract
Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m−2 within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m−2 and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.
Footnotes
- ↵1To whom correspondence should be addressed. Email: apossner{at}carnegiescience.edu.
Author contributions: A.P. and K.C. designed research; A.P. performed research; A.P. analyzed data; and A.P. and K.C. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1705710114/-/DCSupplemental.
- Copyright © 2017 the Author(s). Published by PNAS.
This is an open access article distributed under the PNAS license.
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Physical Sciences
- Environmental Sciences
- Sustainability Science