New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
How social information can improve estimation accuracy in human groups
Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved October 2, 2017 (received for review March 5, 2017)

Significance
Digital technologies deeply impact the way that people interact. Therefore, it is crucial to understand how social influence affects individual and collective decision-making. We performed experiments where subjects had to answer questions and then revise their opinion after knowing the average opinion of some previous participants. Moreover, unbeknownst to the subjects, we added a controlled number of virtual participants always giving the true answer, thus precisely controlling social information. Our experiments and data-driven model show how social influence can help a group of individuals collectively improve its performance and accuracy in estimation tasks depending on the quality and quantity of information provided. Our model also shows how giving slightly incorrect information could drive the group to a better performance.
Abstract
In our digital and connected societies, the development of social networks, online shopping, and reputation systems raises the questions of how individuals use social information and how it affects their decisions. We report experiments performed in France and Japan, in which subjects could update their estimates after having received information from other subjects. We measure and model the impact of this social information at individual and collective scales. We observe and justify that, when individuals have little prior knowledge about a quantity, the distribution of the logarithm of their estimates is close to a Cauchy distribution. We find that social influence helps the group improve its properly defined collective accuracy. We quantify the improvement of the group estimation when additional controlled and reliable information is provided, unbeknownst to the subjects. We show that subjects’ sensitivity to social influence permits us to define five robust behavioral traits and increases with the difference between personal and group estimates. We then use our data to build and calibrate a model of collective estimation to analyze the impact on the group performance of the quantity and quality of information received by individuals. The model quantitatively reproduces the distributions of estimates and the improvement of collective performance and accuracy observed in our experiments. Finally, our model predicts that providing a moderate amount of incorrect information to individuals can counterbalance the human cognitive bias to systematically underestimate quantities and thereby improve collective performance.
Footnotes
- ↵1To whom correspondence should be addressed. Email: guy.theraulaz{at}univ-tlse3.fr.
Author contributions: B.J., C.S., and G.T. designed research; B.J., H.-r.K., R.E., S.C., A.B., T.K., C.S., and G.T. performed research; B.J., C.S., and G.T. analyzed data; and B.J., C.S., and G.T. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1703695114/-/DCSupplemental.
- Copyright © 2017 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Citation Manager Formats
Sign up for Article Alerts
Jump to section
You May Also be Interested in
More Articles of This Classification
Biological Sciences
Psychological and Cognitive Sciences
Physical Sciences
Related Content
- No related articles found.
Cited by...
- No citing articles found.