Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Latest Articles
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • Archive
  • Front Matter
  • News
    • For the Press
    • Highlights from Latest Articles
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Purpose and Scope
    • Editorial and Journal Policies
    • Submission Procedures
    • For Reviewers
    • Author FAQ

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology

Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals

D. Richard Cameron, David C. Marvin, Jonathan M. Remucal, and Michelle C. Passero
PNAS November 28, 2017 114 (48) 12833-12838; published ahead of print November 13, 2017 https://doi.org/10.1073/pnas.1707811114
D. Richard Cameron
aThe Nature Conservancy, San Francisco, CA 94105;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Richard Cameron
  • For correspondence: dcameron@tnc.org
David C. Marvin
aThe Nature Conservancy, San Francisco, CA 94105;bDepartment of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan M. Remucal
cJonathan Remucal Consulting, Madison, WI 53705
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michelle C. Passero
aThe Nature Conservancy, San Francisco, CA 94105;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  1. Edited by Pamela A. Matson, Stanford University, Stanford, CA, and approved October 5, 2017 (received for review May 10, 2017)

  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Significance

Combatting climate change will require using all available tools, especially those that contribute to other societal and economic goals, such as natural resource protection and energy security. Conserving and managing natural and agricultural lands to retain and absorb greenhouse gasses (GHGs) are tools that have not been widely integrated into climate policy. Our analysis provides a quantification of potential climate benefits from multiple land-based activities for a jurisdiction with an emissions reduction target (up to 13.3% of the cumulative reductions needed to meet the 2050 target, or nearly three-fourths of a billion metric tons of GHGs). This approach provides a model that other jurisdictions can use to evaluate emissions reductions that might be achieved from conserving and restoring natural lands.

Abstract

Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacities to meet the emissions reduction targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. We examine the scale of contributions from selected activities in natural and agricultural lands and assess the degree to which these actions could help the state achieve its 2030 and 2050 climate mitigation goals under alternative implementation scenarios. By 2030, an Ambitious implementation scenario could contribute as much as 147 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state’s 2030 goal, greater than the individual projected contributions of four other economic sectors, including those from the industrial and agricultural sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.9 MMTCO2e⋅y−1 or 13.4% of the state’s 2030 reduction goal. Most reductions come from changes in forest management (61% of 2050 projected cumulative reductions under the Ambitious scenario), followed by reforestation (14%), avoided conversion (11%), compost amendments to grasslands (9%), and wetland and grassland restoration (5%). Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes.

  • land use change
  • avoided conversion
  • carbon sequestration
  • natural lands
  • agriculture

Footnotes

  • ↵1To whom correspondence should be addressed. Email: dcameron{at}tnc.org.
  • Author contributions: D.R.C., D.C.M., J.M.R., and M.C.P. designed research; D.R.C., D.C.M., and J.M.R. performed research; D.R.C., D.C.M., and J.M.R. analyzed data; and D.R.C., D.C.M., J.M.R., and M.C.P. wrote the paper.

  • The authors declare no conflict of interest.

  • This article is a PNAS Direct Submission.

  • Data deposition: All data and simulation source code are available for download through the Open Science Framework repository (https://osf.io/UHJCF/).

  • This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707811114/-/DCSupplemental.

  • Copyright © 2017 the Author(s). Published by PNAS.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

View Full Text
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
Citation Tools
Land-based activities for climate mitigation
D. Richard Cameron, David C. Marvin, Jonathan M. Remucal, Michelle C. Passero
Proceedings of the National Academy of Sciences Nov 2017, 114 (48) 12833-12838; DOI: 10.1073/pnas.1707811114

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Land-based activities for climate mitigation
D. Richard Cameron, David C. Marvin, Jonathan M. Remucal, Michelle C. Passero
Proceedings of the National Academy of Sciences Nov 2017, 114 (48) 12833-12838; DOI: 10.1073/pnas.1707811114
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 116 (8)
Current Issue

Submit

Sign up for Article Alerts

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Conclusion
    • Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

News Feature: Cities serve as testbeds for evolutionary change
Urban living can pressure flora and fauna to adapt in intriguing ways. Biologists are starting to take advantage of this convenient laboratory of evolution.
Image credit: Kristin Winchell (Washington University in St. Louis, St. Louis).
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Opinion: “Plan S” falls short for society publishers—and for the researchers they serve
Several aspects of the proposal, which aims to expand open access, require serious discussion and, in some cases, a rethink.
Image credit: Dave Cutler (artist).
Featured Profile
PNAS Profile of NAS member and biochemist Hao Wu
 Nonmonogamous strawberry poison frog (Oophaga pumilio).  Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Putative signature of monogamy
A study suggests a putative gene-expression hallmark common to monogamous male vertebrates of some species, namely cichlid fishes, dendrobatid frogs, passeroid songbirds, common voles, and deer mice, and identifies 24 candidate genes potentially associated with monogamy.
Image courtesy of Yusan Yang (University of Pittsburgh, Pittsburgh).
Active lifestyles. Image courtesy of Pixabay/MabelAmber.
Meaningful life tied to healthy aging
Physical and social well-being in old age are linked to self-assessments of life worth, and a spectrum of behavioral, economic, health, and social variables may influence whether aging individuals believe they are leading meaningful lives.
Image courtesy of Pixabay/MabelAmber.

More Articles of This Classification

Biological Sciences

  • Major histocompatibility complex class I diversity limits the repertoire of T cell receptors
  • LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism
  • Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-mediated calcium leak and is antiarrhythmic
Show more

Sustainability Science

  • Impacts of the Northwest Forest Plan on forest composition and bird populations
  • Seeking natural capital projects: Forest fires, haze, and early-life exposure in Indonesia
  • Crop variety management for climate adaptation supported by citizen science
Show more

Related Content

  • No related articles found.
  • Scopus
  • PubMed
  • Google Scholar

Cited by...

  • Landscapes that work for biodiversity and people
  • Scopus (10)
  • Google Scholar

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Latest Articles
  • Archive

PNAS Portals

  • Classics
  • Front Matter
  • Teaching Resources
  • Anthropology
  • Chemistry
  • Physics
  • Sustainability Science

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Press
  • Site Map

Feedback    Privacy/Legal

Copyright © 2019 National Academy of Sciences. Online ISSN 1091-6490