New Research In
Physical Sciences
Social Sciences
Featured Portals
Articles by Topic
Biological Sciences
Featured Portals
Articles by Topic
- Agricultural Sciences
- Anthropology
- Applied Biological Sciences
- Biochemistry
- Biophysics and Computational Biology
- Cell Biology
- Developmental Biology
- Ecology
- Environmental Sciences
- Evolution
- Genetics
- Immunology and Inflammation
- Medical Sciences
- Microbiology
- Neuroscience
- Pharmacology
- Physiology
- Plant Biology
- Population Biology
- Psychological and Cognitive Sciences
- Sustainability Science
- Systems Biology
Coupled European and Greenland last glacial dust activity driven by North Atlantic climate
Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved October 26, 2017 (received for review July 15, 2017)

Significance
Atmospheric dust is a major component of climate change. However, the relationship between glacial continental dust activity and abrupt centennial–millennial-scale climate changes of the North Atlantic is poorly known. Recent advances in high-precision radiocarbon dating of small gastropods in continental loess deposits provide an opportunity to gain unprecedented insights into dust variations and its major drivers at centennial–millennial scales from a near-source dust archive. Here, we show that Late Quaternary North Atlantic temperature and dustiness in Greenland and Europe were largely synchronous and suggest that this coupling was driven via precipitation changes and large-scale atmospheric circulation.
Abstract
Centennial-scale mineral dust peaks in last glacial Greenland ice cores match the timing of lowest Greenland temperatures, yet little is known of equivalent changes in dust-emitting regions, limiting our understanding of dust−climate interaction. Here, we present the most detailed and precise age model for European loess dust deposits to date, based on 125 accelerator mass spectrometry 14C ages from Dunaszekcső, Hungary. The record shows that variations in glacial dust deposition variability on centennial–millennial timescales in east central Europe and Greenland were synchronous within uncertainty. We suggest that precipitation and atmospheric circulation changes were likely the major influences on European glacial dust activity and propose that European dust emissions were modulated by dominant phases of the North Atlantic Oscillation, which had a major influence on vegetation and local climate of European dust source regions.
Footnotes
- ↵1To whom correspondence should be addressed. Email: ujvari.gabor{at}csfk.mta.hu.
Author contributions: G.Ú. designed research; G.Ú. performed research; M.M., A.D., A.J.T.J., and J.K. contributed new reagents/analytic tools; G.Ú., M.M., A.D., G.V., A.J.T.J., B.P.-G., J.-P.B., and J.K. analyzed data; and G.Ú., T.S., and F.L. wrote the paper.
The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1712651114/-/DCSupplemental.
- Copyright © 2017 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
Citation Manager Formats
Sign up for Article Alerts
Article Classifications
- Physical Sciences
- Earth, Atmospheric, and Planetary Sciences