Skip to main content
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian
  • Log in
  • My Cart

Main menu

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses
  • Submit
  • About
    • Editorial Board
    • PNAS Staff
    • FAQ
    • Accessibility Statement
    • Rights and Permissions
    • Site Map
  • Contact
  • Journal Club
  • Subscribe
    • Subscription Rates
    • Subscriptions FAQ
    • Open Access
    • Recommend PNAS to Your Librarian

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Home
Home

Advanced Search

  • Home
  • Articles
    • Current
    • Special Feature Articles - Most Recent
    • Special Features
    • Colloquia
    • Collected Articles
    • PNAS Classics
    • List of Issues
  • Front Matter
  • News
    • For the Press
    • This Week In PNAS
    • PNAS in the News
  • Podcasts
  • Authors
    • Information for Authors
    • Editorial and Journal Policies
    • Submission Procedures
    • Fees and Licenses

New Research In

Physical Sciences

Featured Portals

  • Physics
  • Chemistry
  • Sustainability Science

Articles by Topic

  • Applied Mathematics
  • Applied Physical Sciences
  • Astronomy
  • Computer Sciences
  • Earth, Atmospheric, and Planetary Sciences
  • Engineering
  • Environmental Sciences
  • Mathematics
  • Statistics

Social Sciences

Featured Portals

  • Anthropology
  • Sustainability Science

Articles by Topic

  • Economic Sciences
  • Environmental Sciences
  • Political Sciences
  • Psychological and Cognitive Sciences
  • Social Sciences

Biological Sciences

Featured Portals

  • Sustainability Science

Articles by Topic

  • Agricultural Sciences
  • Anthropology
  • Applied Biological Sciences
  • Biochemistry
  • Biophysics and Computational Biology
  • Cell Biology
  • Developmental Biology
  • Ecology
  • Environmental Sciences
  • Evolution
  • Genetics
  • Immunology and Inflammation
  • Medical Sciences
  • Microbiology
  • Neuroscience
  • Pharmacology
  • Physiology
  • Plant Biology
  • Population Biology
  • Psychological and Cognitive Sciences
  • Sustainability Science
  • Systems Biology
Research Article

The biomass distribution on Earth

View ORCID ProfileYinon M. Bar-On, Rob Phillips, and View ORCID ProfileRon Milo
PNAS June 19, 2018 115 (25) 6506-6511; first published May 21, 2018; https://doi.org/10.1073/pnas.1711842115
Yinon M. Bar-On
aDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yinon M. Bar-On
Rob Phillips
bDepartment of Physics, California Institute of Technology, Pasadena, CA 91125;
cDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ron Milo
aDepartment of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ron Milo
  • For correspondence: ron.milo@weizmann.ac.il
  1. Edited by Paul G. Falkowski, Rutgers, The State University of New Jersey, New Brunswick, NJ, and approved April 13, 2018 (received for review July 3, 2017)

See related content:

  • The scale of life and its lessons for humanity
    - May 23, 2018
  • Article
  • Figures & SI
  • Info & Metrics
  • PDF
Loading

Article Figures & SI

Figures

  • Tables
  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Graphical representation of the global biomass distribution by taxa. (A) Absolute biomasses of different taxa are represented using a Voronoi diagram, with the area of each cell being proportional to that taxa global biomass (the specific shape of each polygon carries no meaning). This type of visualization is similar to pie charts but has a much higher dynamic range (a comparison is shown in SI Appendix, Fig. S4). Values are based on the estimates presented in Table 1 and detailed in the SI Appendix. A visual depiction without components with very slow metabolic activity, such as plant stems and tree trunks, is shown in SI Appendix, Fig. S1. (B) Absolute biomass of different animal taxa. Related groups such as vertebrates are located next to each other. We estimate that the contribution of reptiles and amphibians to the total animal biomass is negligible, as we discuss in the SI Appendix. Visualization performed using the online tool at bionic-vis.biologie.uni-greifswald.de/.

  • Fig. 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 2.

    Biomass distributions across different environments and trophic modes. (A) Absolute biomass is represented using a Voronoi diagram, with the area of each cell being proportional to the global biomass at each environment. Values are based on SI Appendix, Table S23. We define deep subsurface as the marine subseafloor sediment and the oceanic crust, as well as the terrestrial substratum deeper than 8 m, excluding soil (6). (B) Fraction of the biomass of each kingdom concentrated in the terrestrial, marine, or deep subsurface environment. For fungi and protists, we did not estimate the biomass present in the deep subsurface due to data scarcity. (C) Distribution of biomass between producers (autotrophs, mostly photosynthetic) and consumers (heterotrophs without deep subsurface) in the terrestrial and marine environments. The size of the bars corresponds to the quantity of biomass of each trophic mode. Numbers are in gigatons of carbon.

  • Fig. 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 3.

    General framework for estimating global biomass. The procedure begins with local samples of biomass across the globe. The more representative the samples are of the natural distribution of the taxon biomass, the more accurate the estimate will be. To move from local samples to a global estimate, a correlation between local biomass densities and an environmental parameter (or parameters) is established. Based on this correlation, in addition to our knowledge of the distribution of the environmental parameter, we extrapolate the biomass across the entire globe. The resolution of the resulting biomass distribution map is dependent on the resolution at which we know the environmental parameter. Integrating across the entire surface of the Earth, we get a global estimate of the biomass of the taxon.

Tables

  • Figures
    • View popup
    Table 1.

    Summary of estimated total biomass for abundant taxonomic groups

    TaxonMass (Gt C)Uncertainty (-fold)
    Plants4501.2
    Bacteria7010
    Fungi123
    Archaea713
    Protists44
    Animals25
     Arthropods, terrestrial0.2
     Arthropods, marine1
     Chordates, fish0.7
     Chordates, livestock0.1
     Chordates, humans0.06
     Chordates, wild mammals0.007
     Chordates, wild birds0.002
     Annelids0.2
     Molluscs0.2
     Cnidarians0.1
     Nematodes0.02
    Viruses0.220
    Total5501.7
    • Values are based on an extensive literature survey and data integration as detailed in the SI Appendix. Reported values have been rounded to reflect the associated level of uncertainty. We report an uncertainty projection for each kingdom as a fold-change factor from the mean, representing a range akin to a 95% confidence interval of the estimate. The procedure for deriving these projections is documented in detail in Materials and Methods and SI Appendix.

Data supplements

  • Supporting Information

    Download Appendix (PDF)

    • pnas.1711842115.sapp.pdf
PreviousNext
Back to top
Article Alerts
Email Article

Thank you for your interest in spreading the word on PNAS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The biomass distribution on Earth
(Your Name) has sent you a message from PNAS
(Your Name) thought you would like to see the PNAS web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The biomass distribution on Earth
Yinon M. Bar-On, Rob Phillips, Ron Milo
Proceedings of the National Academy of Sciences Jun 2018, 115 (25) 6506-6511; DOI: 10.1073/pnas.1711842115

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The biomass distribution on Earth
Yinon M. Bar-On, Rob Phillips, Ron Milo
Proceedings of the National Academy of Sciences Jun 2018, 115 (25) 6506-6511; DOI: 10.1073/pnas.1711842115
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Mendeley logo Mendeley
Proceedings of the National Academy of Sciences: 115 (25)
Table of Contents

Submit

Sign up for Article Alerts

Article Classifications

  • Biological Sciences
  • Systems Biology

Jump to section

  • Article
    • Abstract
    • Results
    • Discussion
    • Materials and Methods
    • Acknowledgments
    • Footnotes
    • References
  • Figures & SI
  • Info & Metrics
  • PDF

You May Also be Interested in

Abstract depiction of a guitar and musical note
Science & Culture: At the nexus of music and medicine, some see disease treatments
Although the evidence is still limited, a growing body of research suggests music may have beneficial effects for diseases such as Parkinson’s.
Image credit: Shutterstock/agsandrew.
Large piece of gold
News Feature: Tracing gold's cosmic origins
Astronomers thought they’d finally figured out where gold and other heavy elements in the universe came from. In light of recent results, they’re not so sure.
Image credit: Science Source/Tom McHugh.
Dancers in red dresses
Journal Club: Friends appear to share patterns of brain activity
Researchers are still trying to understand what causes this strong correlation between neural and social networks.
Image credit: Shutterstock/Yeongsik Im.
White and blue bird
Hazards of ozone pollution to birds
Amanda Rodewald, Ivan Rudik, and Catherine Kling talk about the hazards of ozone pollution to birds.
Listen
Past PodcastsSubscribe
Goats standing in a pin
Transplantation of sperm-producing stem cells
CRISPR-Cas9 gene editing can improve the effectiveness of spermatogonial stem cell transplantation in mice and livestock, a study finds.
Image credit: Jon M. Oatley.

Similar Articles

Site Logo
Powered by HighWire
  • Submit Manuscript
  • Twitter
  • Facebook
  • RSS Feeds
  • Email Alerts

Articles

  • Current Issue
  • Special Feature Articles – Most Recent
  • List of Issues

PNAS Portals

  • Anthropology
  • Chemistry
  • Classics
  • Front Matter
  • Physics
  • Sustainability Science
  • Teaching Resources

Information

  • Authors
  • Editorial Board
  • Reviewers
  • Librarians
  • Press
  • Site Map
  • PNAS Updates

Feedback    Privacy/Legal

Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490